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Resumo
A necessidade de reduzir as emissões de gases de efeito estufa (GEEs) tem impulsionado
a adoção de veículos elétricos a bateria (BEVs) em frotas de caminhões de entrega. No
entanto, essa mudança traz desafios e oportunidades específicos. Por um lado, veículos
elétricos são mais eficientes e, muitas vezes, possuem um custo variável menor do que
veículos a combustão. Por outro, a autonomia dos BEVs, ou seja, a distância que pode
ser percorrida sem recarga da bateria, é limitada. Tal aspecto é especialmente relevante
devido à baixa densidade energética das baterias e à infraestrutura limitada de pontos de
recarga em trânsito.

Diversos fatores afetam a autonomia dos veículos elétricos, como o tipo de carga, o relevo,
o tráfego, o tipo de estrada, as condições climáticas e o estilo de direção. Alguns desses
fatores têm uma relação direta com características geograficamente delimitadas, como
congestionamentos, relevo e tipo de via.

Foram desenvolvidos modelos de energia híbridos, compostos por modelagem física e es-
tatística (físico-estatísticos), abrangendo uma variedade de escalas, que vão desde o mi-
croscópico até o macroscópico, e incorporando diferentes modelagens de regeneração de
energia: nenhuma regeneração, regeneração linear e não-linear. Esses modelos foram apli-
cados a conjuntos de dados de GPS que apresentavam alta latência. Foram obtidas taxas
de erro variáveis, sendo o modelo microscópico com modelagem exponencial da energia
regenerada o que levou ao menor erro percentual médio, no valor de 2,35% nos dados de
teste.

Conclui-se que modelos com granularidade mais refinada na estimação de energia tem o
o erro associado menor. Nesse sentido, em aplicações em que é possível prever de ante-
mão os parâmetros necessários para modelos mais precisos, o seu uso pode melhorar a
confiabilidade os processos associados, como roteirização e dimensionamento de frotas.

Palavras-Chave – veículos elétricos, modelo de energia, regeneração, sustentabilidade,
logística, frotas eletrificadas
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Abstract
The need to reduce greenhouse gas emissions has driven the adoption of battery electric
vehicles (BEVs) in delivery truck fleets. However, this shift presents specific challenges
and opportunities. On one hand, electric vehicles are more efficient and often have lower
variable costs than combustion vehicles. On the other, the range of BEVs, i.e., the distance
they can travel without recharging their battery, is limited. This aspect is particularly rel-
evant due to the low energy density of batteries and the limited infrastructure of charging
points on the road.

Various factors affect the range of electric vehicles, such as the type of load, terrain, traffic,
road type, weather conditions, and driving style. Some of these factors have a direct
relationship with geographically delimited features, such as congestion, terrain, and road
type.

Hybrid energy models have been developed, combining physical and statistical modeling
(physico-statistical), covering a range of scales from microscopic to macroscopic, and incor-
porating different energy regeneration models: no regeneration, linear regeneration, and
non-linear regeneration. These models were applied to GPS datasets with high latency.
Variable error rates were obtained, with the microscopic model using exponential regen-
eration energy modeling producing the lowest average percentage error at 2.35% in the
test data.

Models with finer granularity in energy estimation have lower associated errors. Because
of that, in applications where it is possible to predict the parameters needed for more
accurate models in advance, their use can improve the reliability of associated processes,
such as routing and fleet sizing.

Keywords – electric vehicles, energy model, regeneration, sustainability, logistics, elec-
trified fleets
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Glossário

BEV - Veículo elétrico a bateria (Battery Electric Vehicle)

CD - Centro de distribuição

EC - Consumo de energia por distância (Energy Consumption)

GEE - Gases de efeito estufa

GPS - Sistema de posicionamento global (Global Positioning System)

ICV - Veículo de combustão interna (Internal Combustion Vehicle)

SOC - Nível de bateria / Estado da carga (State of Charge)

TCO - Custo total de propriedade (Total Cost of Ownership)
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1 Introdução

O presente trabalho de formatura foi conduzido como um estudo de caso feito
com uma empresa do ramo de alimentos e bebidas. Em específico, este trabalho foi de-
senvolvido no contexto de um centro de distribuição (CD) que atende uma grande cidade
brasileira. Neste capítulo são apresentados motivações e objetivos do estudo, além da
contextualização do problema e da operação da empresa em questão. Durante o texto,
quando o termo "veículo elétrico"for utilizado, ele se refere a "veículo elétrico a bateria",
ou seja, BEV s.

1.1 Motivação

1.1.1 Aspecto ambiental

O Brasil foi responsável por 1,32% das emissões globais de CO2 no ano de 2021
(Our World in Data, 2021). Veículos pesados, como caminhões, são responsáveis por uma
parcela considerável da emissão de gases de efeito estufa: no ano de 2020, os caminhões
foram responsáveis pela emissão de 16 milhões de toneladas de CO2,eq apenas no estado
de São Paulo (Companhia Ambiental do Estado de São Paulo (CETESB), 2022).

No Brasil, veículos com motor a combustão interna flex-fuel dominam o mercado
de veículos a passeio. Esses veículos são capazes de funcionar tanto com etanol hidratado
quanto com gasolina C. No total, o etanol representa cerca da metade do consumo de
combustível (em volume) da frota de automóveis de passageiros, seja como etanol hidra-
tado ou na mistura de gasolina C. Simplesmente operar os veículos flex-fuel apenas com
etanol seria capaz de reduzir as emissões de GEEs da frota de passeio em 31% (Mera et
al., 2023).

Ao contrário do cenário de veículos de passeio, no caso dos caminhões, a maioria
da frota ainda opera com veículos a Diesel. Segundo o Anuário da Indústria Automo-
bilística Brasileira (2023), 99,127% dos caminhões licenciados em 2022 eram a Diesel,
ao passo que apenas 0,564% eram elétricos e 0,281% a gás. Segundo EPA (United Sta-
tes Environmental Protection Agency) (2023), emissões de motores a Diesel contribuem
para a formação de ozônio em níveis terrestres, prejudicando a vegetação e desencadeando
a produção de chuva ácida, com impactos diretos no solo e corpos d’água. Além disso,
prejudicam a saúde humana e têm elevada taxa de emissão de gases de efeito estufa.

Globalmente, diversas iniciativas pretendem buscar alternativas aos veículos movi-
dos a combustíveis fósseis, dada a necessidade urgente de mitigar as mudanças climáticas.
A eletrificação das frotas tem o mérito de melhorar a eficiência energética, uma vez que os
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motores elétricos são mais eficientes do que os motores de combustão interna (ICV) (Basso
et al., 2019), mas essa eficiência não se traduz necessariamente em emissões menores de
gases de efeito estufa (GEEs), uma vez que tal resultado é dependente da composição da
matriz energética empregada para recarregar as baterias.

Em países cuja matriz elétrica tem alta intensidade de emissão de CO2, como China
e Índia, os veículos elétricos a bateria (BEVs) podem, na verdade, emitir quantidades
maiores de CO2 por quilômetro rodado do que veículos a combustão semelhantes em
outros locais, segundo Doucette; McCulloch (2011). Em um sentido similar, Kawamoto
et al. (2019) calcularam a distância necessária a ser percorrida por um veículo elétrico à
bateria (BEV ) de modo que suas emissões se igualassem com um veículo a combustão
interna (ICV ) ao longo de seu ciclo de vida, o chamado DIP (Distance of Intersection
Point). Nesse estudo foi verificado que quanto mais limpa a matriz energética de um país,
menor seria o DIP e, para a Austrália, em particular, as emissões de BEV s sempre eram
mais elevadas do que de ICV s.

Os veículos elétricos não são a única alternativa para a redução na emissão de
GEEs. Há também a possibilidade do uso de veículos a combustão movidos por biocom-
bustíveis, como o etanol. O Brasil se encontra num cenário propício para ambas soluções,
dada a baixa taxa de emissão de sua matriz energética e seu protagonismo relacionado ao
combustível etanol, que data da década de 1970, com a política do Pró-Álcool. Segundo
Moreira; Pacca; Goldemberg (2022), do ponto de vista ambiental, a co-produção de ele-
tricidade e biocombustível a partir de cana-de-açúcar, utilizada para alimentar veículos
híbridos, seria uma boa prática para melhorar a eficiência energética em veículos leves,
podendo reduzir demanda de energia destes em mais de duas vezes.

Segundo Sathre; Gustavsson (2023), caminhões elétricos com bateria apresentam
um menor uso de energia primária e emissões de CO2 ao longo de seu ciclo de vida em
comparação com caminhões de combustão interna. O mesmo estudo aponta que o uso
mais eficiente de energia e o menor impacto climático são observados quando os cami-
nhões elétricos são alimentados por energia eólica e bioeletricidade co-gerada. Os veículos
elétricos a bateria (BEVs) ainda têm a vantagem de não emitir gases durante sua operação,
abrangendo não apenas o CO2, mas também outros gases poluentes e material particulado
(MP), que podem representar riscos para a saúde, especialmente em ambientes urbanos.
Segundo Gouveia et al. (2006), existe uma correlação estatisticamente significativa entre o
aumento dos níveis de poluentes na atmosfera e um aumento nas taxas de hospitalizações
por diversas causas.

Conforme Carvalho (2011), a maior parte das emissões de carbono provenientes de
veículos no Brasil se concentra em regiões urbanas, onde mais de 80% da população reside.
De fato, no contexto urbano, os veículos elétricos demonstram ser uma escolha favorável.
Conforme observado por Barnitt (2011), caminhões de entrega urbana geralmente operam



1.1. Motivação 17

a baixas velocidades médias, e os motores elétricos apresentam uma maior eficiência nesse
cenário. Além disso, as frequentes desacelerações e paradas no trânsito urbano são ideais
para tirar proveito do sistema de frenagem regenerativa, como mencionado por Hellgren
(2007).

De acordo com Lee; Thomas; Brown (2013), fazendo uma avaliação do ciclo de vida
de caminhões elétricos e a diesel, considerando um cenário de um ciclo de condução com
paradas frequentes e baixa velocidade média, como o de uma grande cidade, caminhões
elétricos emitem de 42% a 61% menos gases de efeito estufa (GEEs) e consomem de 32%
a 54% menos energia do que caminhões a diesel, dependendo dos cenários de eficiência do
veículo.

No Brasil, já existem políticas de incentivo ao uso de veículos elétricos. Segundo
a CETESB (2023), o Proconve (Programa de Controle da Poluição do Ar por Veículos
Automotores) é um programa do governo estadual de São Paulo que tem como um dos
seus objetivos a redução de emissão de poluentes. Ele tem entrado em vigência em dife-
rentes fases, que tornam os limites de gases emitidos cada vez menores, aumentando a
atratividade econômica dos BEVs. Além disso, o rodízio de veículos em São Paulo não se
aplica a carros elétricos e híbridos, já que a lei n◦15.997, de 27 de Maio de 2014, estabelece
que os veículos elétricos, movidos a hidrogênio e os híbridos estão isentos do cumprimento
da restrição determinada pelo Rodízio Municipal de Veículos.

1.1.2 Desafios e oportunidades em frotas eletrificadas

Em primeiro lugar, é importante destacar que, embora o custo global das bate-
rias tenha diminuído nos últimos anos de $1100/kWh em 2010 para $137/kWh em 2020
(Bhardwaj; Mostofi, 2022), elas ainda representam um dos componentes mais caros dos
veículos elétricos (BEVs) (Bhardwaj; Mostofi, 2022; Basso et al., 2019). Outro ponto a ser
considerado é a limitação da densidade energética das baterias. Em comparação com veí-
culos de combustão interna, BEVs são mais eficientes, tendo eficiência perto de 90% (Fiori;
Ahn; Rakha, 2016) e veículos a combustão algo perto de 40% (Paschoal et al., 2017). Ape-
sar disso, os BEVs ainda armazenam quantidades relativamente baixas de energia em suas
baterias. Por exemplo, o diesel possui uma densidade energética de 45 MJ/kg (Hore-Lacy,
2011), enquanto as baterias dos BEVs geralmente armazenam entre 100 e 265 Wh/kg
(Deng et al., 2020), o que equivale a 0,36-0,95 MJ/kg. Isto é, a densidade energética do
diesel é maior do que uma bateria elétrica. Aumentar essa densidade energética acarreta
riscos de segurança, como o potencial de incêndios (Deng et al., 2020).

Apesar disso, o custo variável de veículos elétricos se mostra como um grande
diferencial em relação ao de veículos a combustão. Bhardwaj; Mostofi (2022) calcularam
o Custo Total de Propriedade (em inglês TCO - Total Cost of Ownership), verificando o
baixo custo variável dos BEVs na União Europeia.
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No Brasil, também, verificamos que o custo da energia elétrica se mostra vantajoso.
Segundo a ANP - Agência Nacional de Petróleo, Gás Natural e Biocombustíveis (2023),
desde janeiro de 2022, o preço médio de revenda do diesel S10 em São Paulo foi de 6,272
R$
L

, como pode ser visto na Figura 1. O preço da energia no ambiente de contratação
livre (ACL) tem uma oscilação alta, mas se manteve abaixo de 0,2 R$

kW h
no últimos meses,

como pode ser visto na oscilação do PLD (Preço de Liquidação das Diferenças) na Figura
2. Considerando a autonomia nominal de 110km para uma bateria de 105 kWh (UOL -
Universo Online, 2022), com um custo de 0,2 R$

kW h
, temos o valor de 0,19 R$

km rodado . Para
um veículo a combustão, considerando o consumo 32L para cada 100km rodados para um
veículo de 15T (Demir; Bektaş; Laporte, 2011), e com o valor de 6,2 R$

L de diesel S10 , temos
o custo de 1,984 R$

km rodado . Ou seja, uma diferença de aproximadamente dez vezes.

Figura 1 – Série histórica do preço médio de revenda do diesel S10 e diesel S500 na cidade
de São Paulo.
Fonte: ANP - Agência Nacional de Petróleo, Gás Natural e Biocombustíveis
(2023)
Elaboração: autor

No entanto, apesar de o custo variável de veículos elétricos ser consideravelmente
mais baixo do que veículos a combustão, seu custo fixo é mais elevado. Os cinco caminhões
de porte leve mais vendidos no Brasil em 2023 têm valores de modelos 2023 entre 284
mil reais e 335 mil reais, segundo a FIPE - Fundação Instituto de Pesquisas Econômicas
(2023), como pode ser visto na tabela 1. Os veículos elétricos, por outros lado, têm valores
mais elevados. Por exemplo, o BEV Volkswagen E-Delivery 11 2023 (3 packs), que tem
um Peso Bruto Total (PBT) de 11400 kg e capacidade máx. de carga útil de 7020kg, tem
um valor superior a 900 mil reais, ao passo que, que o ICV VW Truck Delivery/9180 tem
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Figura 2 – Série histórica do PLD (Preço de Liquidação das Diferenças) semanal médio
para o Sudeste
Fonte: Energia Elétrica (2023)
Elaboração: autor

um PBT de 9200 kg e capacidade máx. de carga útil de 6225kg, custando próximo a 335
mil reais.

Caminhão
Número de emplacamentos

(jan-set 2023) (1)

Preço

(Modelo 2023)(2)

M. Benz / Accelo 1016 1531 R$ 329.830,00

VW Truck Delivery/9170 1213 R$ 298.049,00

M. Benz / Accelo 815 829 R$ 299.746,00

VW Truck Delivery/9180 618 R$ 335.762,00

IVECO / Tector 9-190 433 R$ 284.929,00

(1): FENABRAVE (2023)

(2): FIPE - Fundação Instituto de Pesquisas Econômicas (2023)

Tabela 1 – Preço dos caminhões leves a combustão (ICV s) mais vendidos até setembro
de 2023
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Caminhão
Capacidade

da bateria
Peso bruto total (PBT) Preço (1)

iEV1200T 97 kWh (2) 7500 kg (2) R$ 393.592,00

e-Delivery 14 (3 packs) 105 kWh (3) 14500 kg (3) R$ 1.031.786,00

e-Delivery 11 (3 packs) 105 kWh (3) 11400 kg (3) R$ 909.328,00

(1): FIPE - Fundação Instituto de Pesquisas Econômicas (2023)

(2): Jac Motors (2023)

(3): Volkswagen (2023)

Tabela 2 – Preço e autonomia média dos caminhões elétricos (BEV s) já utilizados em
operação pela empresa do estudo

Não apenas o custo fixo de veículos elétricos é maior do que o de veículos a com-
bustão, existem incertezas maiores embutidas em sua operação. O processo de recarga das
baterias geralmente requer muito tempo e a infraestrutura disponível para esse fim ainda
é escassa (Basso et al., 2019). Por isso, o tempo entre os usos precisa ser bem calculado,
assim como a autonomia esperada para uma dada rota.

Esses fatores resultam em veículos elétricos com um custo de aquisição elevado e
autonomia limitada. Dessa forma, a baixa autonomia pode levar a dois cenários indese-
jados. O primeiro é a subutilização do caminhão, de modo a evitar o risco de ficar sem
carga ao longo da rota. O segundo cenário é a parada do caminhão devido ao esgotamento
da bateria, o que acarreta em custos de reboque e na interrupção da rota planejada. As-
sim, embora o custo variável relacionado à energia em veículos elétricos a bateria (BEVs)
seja consideravelmente menor do que nos veículos de combustão interna (ICVs), os BEVs
enfrentam desafios devido a seus maiores custos fixos e menor resiliência operacional.

1.1.3 Importância de modelos de energia para veículos elétricos

Considerando a baixa autonomia de veículos elétricos e o seu elevado tempo rela-
tivo para recarga, faz-se importante haver modelos confiáveis para a estimação de energia
consumida em uma dada rota, ou, de forma mais abrangente, em uma dada operação.

Do ponto de vista de planejamento e scheduling do carregamento de veículos elé-
tricos, compreender como e quando a energia é consumida durante as operações diárias
ajuda na implementação de estratégias de carregamento, garantindo que os veículos este-
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jam prontos para atender às demandas de entrega ao longo do dia. Rogge et al. (2018)
desenvolveram uma metodologia para estimação do TCO (total cost of ownership) de uma
frota de ônibus elétricos, em que são considerados o scheduling de carregamento, assim
como os custos de investimento e operacionais do sistema de ônibus. Um dos insumos
cruciais para esse modelo é a estimação de nível de bateria utilizado entre trechos.

Modelos confiáveis de estimação de energia de veículos elétricos também são cru-
ciais para realizar um planejamento de roteirização desses veículos. Em geral, algoritmos
de roteamento assumem o consumo energético como uma função linear da distância, ou
seja, uma autonomia constante. No entanto, o consumo de energia é influenciado não só
pela distância percorrida, mas também por outros fatores, como a carga transportada, o
perfil de velocidades e acelerações, a topografia e o uso de equipamentos auxiliares, como
o ar-condicionado (Basso et al., 2019). Ao incorporar essas informações no planejamento
da roteirização, é possível estimar com mais precisão o consumo de energia necessário
para cada rota. Isso poderia permitir uma programação mais eficiente, garantindo que
os veículos tenham autonomia suficiente para completar as rotas designadas, evitando
paradas indesejadas devido ao esgotamento da bateria.

Além dos fatores relacionados à rota, é importante considerar que diferentes veícu-
los possuem eficiências variadas, dependendo do contexto em que são utilizados. Existem
veículos mais adequados para diferentes situações. Por exemplo, um caminhão com baixo
torque tem um desempenho melhor em trajetos de alta velocidade e de baixa inclina-
ção, enquanto caminhões com alto torque apresentam um melhor desempenho em rotas
com aclives e declives acentuados, segundo Velázquez-Martínez et al. (2016). No caso de
veículos elétricos, Ahmed et al. (2022) encontraram uma correlação entre especificações
técnicas e autonomia nominal. A escolha por parâmetros de torque pode comprometer va-
riáveis preditoras de maior autonomia em condições padrão do fabricante. Nesse sentido,
no caso de uma frota com mais de um modelo de caminhão elétrico, os modelos de energia
poderiam ser úteis para a alocação de rotas para caminhões de modo a minimizar o gasto
energético, já que os modelos incorporam tais diferenças de desempenho dos caminhões
em diferentes cenários. Em veículos a combustão, é sabido que tal seleção de rotas é algo
que impacta no consumo de energia, portanto, na emissão de gases, sendo que a seleção
ótima de caminhos pode levar a uma diminuição de 4% nas emissões em comparação com
métodos tradicionais de otimização de distância (Behnke; Kirschstein, 2017).

Além disso, na escolha de trajetos, os modelos de energia também poderiam ser
utilizados para selecionar rotas de menor consumo entre dois pontos, visto que mesmo
pequenas variabilidades na rota escolhida podem gerar um impacto perceptível na auto-
nomia do veículo.

Dessa forma, modelos de energia são importantes para otimização de aspectos
operacionais de veículos elétricos, como scheduling de carregamento e roteirização. Tais
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aspectos, por sua vez, têm efeito direto no TCO e na taxa de emissão dos veículos a longo
do seu ciclo de vida, o que impacta diretamente na sua viabilidade econômica e no seu
impacto ambiental.

A eficácia desses modelos é ressaltada quando são capazes de extrapolarem além
das condições previamente observadas, permitindo a projeção e análise em contextos que
ainda não foram diretamente vivenciados. Para tal, não apenas é necessário o desenvolvi-
mento e validação de parâmetros de um modelo em específico, mas, também, a simulação
de condições aderentes aos dados utilizados para o ajuste paramétrico do modelo. Isto é,
no caso de um modelo que utiliza dados de operação com período entre amostragens de
10 segundos, o perfil simulado deve ser coerente com tal amostragem.

Em resumo, os modelos de energia, embora fundamentados em aspectos primor-
dialmente mecânicos e físicos dos veículos, acarretam implicações estratégicas e operaci-
onais significativas. Nesse contexto, torna-se crucial uma análise centrada nas lacunas e
potencialidades desses modelos, adotando uma perspectiva de planejamento e operação
característica da engenharia de produção.

1.2 Diagnóstico da operação

O presente trabalho de formatura foi conduzido como um estudo de caso feito com
uma empresa do ramo de alimentos e bebidas. No centro de distribuição estudado durante
esse trabalho, opera-se com 42 modelos de veículos elétricos do modelo Volkswagen e-
Delivery 14 (Figura 3), com capacidade para 6 pallets. O total da frota do CD é de 159
veículos, ou seja, 26,4% da frota é eletrificada. Além disso, toda a energia que abastece o
CD é de geração renovável e limpa. As entregas são feitas no contexto B2B. Anteriormente,
o CD operou também com modelos iEV1200T da Jac Motors, no entanto, no período
estudado, apenas os modelos da Volkswagen estavam em operação. A versão utilizada
do e-Delivery 14 contém 3 packs de bateria, totalizando 105 kWh, como uma autonomia
nominal de 110km.

Ao longo de 2023, foram realizadas oito visitas ao centro de distribuição, acom-
panhadas por análises de rotas e entrevistas com supervisores de operação e roteirização.
Inspeções minuciosas foram conduzidas manualmente em fichas contendo informações de
mais de 350 rotas para avaliar os níveis de bateria na chegada dos caminhões ao centro
de distribuição. Uma análise individual de mais de 200 rotas foi realizada para identificar
padrões operacionais, contribuindo assim para a curadoria de dados necessária para este
trabalho.

O processo de entregas tem início com a roteirização, que utiliza um parâmetro
de autonomia fixo para os veículos elétricos. A definição desse parâmetro é resultado de
reuniões entre a equipe de liderança do centro de distribuição e a central de roteirização
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Figura 3 – E-Delivery 14.
Fonte: Volkswagen

da empresa. Há esforços para estabelecer rotas fixas e manter motoristas consistentes para
cada caminhão. No entanto, esse processo ainda não está completamente aderente.

Antes de saírem para as entregas, durante a noite, os caminhões elétricos são
carregados em carregadores como os da Figura 4 por cerca de 8 horas. Um procedimento
de verificação é executado no momento de saída, chamado de checklist, o qual abrange
a inspeção de danos no veículo, a confirmação da existência de acessórios como extintor,
cones e cofre, a disponibilidade de carrinhos auxiliares para o transporte das caixas, a
verificação da quilometragem registrada no veículo e, no caso dos caminhões elétricos, a
garantia de que o veículo só deixa o centro de distribuição com o painel indicando uma
carga de bateria de 100%.

Durante o processo de entregas, o motorista recebe instruções para utilizar um
aplicativo exclusivo da empresa. Dentro desse aplicativo, há certa flexibilidade para esco-
lher a primeira entrega da rota. No entanto, uma vez que a primeira entrega é feita, o
motorista deve seguir rigorosamente as orientações fornecidas pelo aplicativo para as en-
tregas subsequentes. É uma exigência constante que o motorista esteja atento ao nível da
bateria exibido no painel do caminhão. Quando a bateria atinge aproximadamente 50%, o
motorista é instruído a informar imediatamente seu supervisor no centro de distribuição
a respeito dessa situação.

A partir desse ponto, uma avaliação detalhada da viabilidade de continuar a rota é
conduzida, ponto por ponto. Essa avaliação leva em consideração a indicação de autonomia
exibida no painel do veículo, a distância estimada até a próxima entrega, fornecida pelo
aplicativo da empresa, e a distância da próxima entrega até o centro de distribuição,
obtida do aplicativo "Google Maps". Se a autonomia indicada no painel for suficiente para
cobrir a soma das distâncias até a próxima entrega e de lá até o centro de distribuição,
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Figura 4 – Carregador do veículo elétrico
Fonte: autor

o motorista prossegue com essa entrega. Esse processo é repetido em todas as entregas
restantes. No entanto, se a autonomia prevista no painel for inferior à distância estimada,
o veículo é direcionado a retornar ao centro de distribuição imediatamente.

Após o retorno ao centro de distribuição, é conduzida uma segunda verificação
(checklist), que abrange a inspeção de possíveis danos recentes no veículo, a confirmação
da presença de todos os acessórios e a anotação da quilometragem atual. Não é registrado
ou armazenado de nenhuma maneira o nível da bateria durante esse processo de retorno.
No entanto, são tiradas fotografias do painel do veículo para documentar a quilometragem
percorrida. Nessas imagens, é comum que o indicador do nível de bateria seja visível como
parte do registro. O desenho esquemático desse fluxograma de operação pode ser visto na
Figura 6.

Para o desenvolvimento do trabalho, foram coletados dados de 329 checklists de
retorno. Apenas um subconjunto destes pode ser utilizado para os modelos de energia, pela
questão da viabilidade do uso dos dados da rota que será discutido em seções subsequentes
do trabalho. Das 329 rotas, 149 tinham fotos em que não era possível verificar o nível de
bateria na foto do checklist. O histograma dos níveis de bateria das 180 rotas restantes
pode ser visto na Figura 5.

É verificável que, na amostra, a média de nível de bateria no retorno ao CD foi de
51,3% e o desvio padrão foi de 11,86%, evidenciando uma alta variabilidade no consumo
de bateria entre as rotas. De fato, a cidade de operação possui uma grande diversidade de
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regiões, algumas delas possuem maior concentração de semáforos, ou ruas mais estreitas,
enquanto outras possuem ruas mais livres e menor adensamento de comércio e residências,
além disso há uma grande diversidade de relevo. Tais fatos podem fazer com que o consumo
em kWh/km tenha uma variabilidade alta.

Figura 5 – Histograma de nível de bateria no retorno ao CD
Fonte: autor

Figura 6 – Fluxograma do processo de entregas e procedimento de emergência
Fonte: autor
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1.3 Objetivo do trabalho

O objetivo deste trabalho reside no desenvolvimento e avaliação de modelos híbri-
dos (combinando modelagem física e estatística) de consumo de energia em três escalas
distintas: macroscópica, mesoscópica e microscópica, utilizando dados provenientes de re-
gistros de operação já existentes nos sistemas da empresa em questão. Os dados utilizados
são de rastreamento por GPS e informações sobre entregas em uma frota pertencente a
uma indústria de bebidas e alimentos. De forma enumerada, os objetivos do trabalho são:

1. Aplicação de modelos de energia microscópicos com diferentes modelagens do meca-
nismo de regeneração e sua correção com um coeficiente linear obtido com validação
estatística

2. Derivação de parâmetros macroscópicos de autonomia (kWh/km) referentes a cada
uma das modelagens do mecanismo de regeneração

3. Derivação de parâmetros mesoscópicos de consumo energético por distância e massa
(kWh/km/kg)

4. Análises de erros, limitações e aplicações dos modelos

Os produtos deste TF serão os modelos ajustados e as análises de suas limitações
e cenários de aplicação.

1.4 Estrutura do trabalho

A estrutura deste trabalho inicia-se com a introdução, abordando as motivações
para a investigação sobre veículos elétricos, a importância dos modelos de estimação de
energia para esses veículos e um diagnóstico operacional da empresa em questão.

Em seguida, realiza-se uma revisão de literatura, destacando as principais refe-
rências sobre estimação de energia, gases de efeito estufa, estado de carga de baterias,
preparação de dados de rastreamento por GPS e aplicações de modelos de energia.

O capítulo subsequente aborda os materiais e métodos, descrevendo os dados, a
metodologia de obtenção e os procedimentos de limpeza e processamento. Além disso, são
apresentados os modelos adotados, sua formulação matemática e os procedimentos para
inferência de parâmetros.

Na seção de resultados e discussão, são analisados os erros e suas possíveis fontes,
juntamente com análises de dimensionamento e clusterização de rotas baseadas nos mode-
los de energia. Ao final do capítulo, são resumidos os insights e casos de uso recomendados
para cada tipo de modelo.
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A conclusão sintetiza os principais aprendizados, seguida por sugestões para futu-
ros desenvolvimentos.

Os apêndices fornecem acesso a parte dos dados e ao código fonte utilizado neste
trabalho.
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2 Revisão da Literatura

Neste capítulo é apresentada uma revisão de literatura focada nos temas de esti-
mação de emissão de gases de efeito estufa em veículos a combustão (ICV ), modelos de
energia para veículos elétricos BEV, estimativas de estado de carga (SOC), preparação
de dados de rastreio de GPS e, por fim, aplicações de modelos de energia para veículos
elétricos.

2.1 Estimação de emissão de gases de efeito estufa (GEE)
Modelos de estimativa de consumo energético já datam bem anteriormente à po-

pularização de veículos elétricos. Na realidade, a estimativa de consumo de combustível
e de emissões de CO2 em veículos a combustão já levou ao desenvolvimento de diversos
modelos de estimativa de consumo energético. Isso ocorre devido à forte correlação entre
o consumo de energia, o consumo de combustível e a emissão de CO2, uma vez que o
consumo de combustível alimenta o sistema energético do motor, e a sua combustão é res-
ponsável pela emissão de gases. Nesse sentido, o desenvolvimento de modelos de emissão
e consumo de combustíveis é precursor a modelos energéticos para veículos elétricos.

Conforme destacado por Paschoal et al. (2017), diversos modelos têm sido empre-
gados para tais finalidades. Entre os mais notáveis para a estimação de emissões de Gases
de Efeito Estufa (GEE), destacam-se o MOBILE, o COPERT e o MOVES. O MOBILE,
desenvolvido pela Agência de Proteção Ambiental dos Estados Unidos (U. S. Environmen-
tal Protection Agency, 2003), calcula a taxa de emissão da frota por categoria de veículo
(em g/milhas), com base em variáveis relacionadas à frota e ao ambiente. O COPERT,
cujo nome se refere ao Programa de Computador para Cálculo de Emissões de Transporte
Rodoviário (Computer Programme to Calculate Emissions from Road Transport) (Ntzi-
achristos et al., 2009), estima as emissões do motor com base na distância percorrida e
em fatores de correção associados à velocidade média e a sua variação. Por sua vez, o
MOVES é um modelo desenvolvido pela USEPA (Koupal et al., 2003) que busca calcular
a Potência Específica do Motor (VSP, em kW/Mg) e correlacioná-la com a emissão de
poluentes (em g/h).

Além dos modelos de GEE, também existem modelos de previsão de consumo de
combustível. Dentre esses, um dos modelos citados por Paschoal et al. (2017) é o PERE.
O PERE (Physical Emission Rate Estimator) foi desenvolvido pela U. S. Environmental
Protection Agency (2004) para apoiar o desenvolvimento do MOVES, e busca estimar a
taxa de consumo de combustível do veículo em g/s, utilizando para tal uma estimativa
da potência demandada.
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Por último, existem modelos que calculam ao mesmo tempo as emissões de GEE
o uso de combustível. Um desses modelos é chamado de CMEM (Modelo Abrangente de
Emissões Modais, em inglês). Este modelo é dividido em diferentes modos, usando infor-
mações sobre como o veículo é operado e um modelo para calcular a potência necessária
pelo veículo. Então, junto com uma estimativa da velocidade do motor, ele calcula quanto
combustível está sendo usado (Barth; Scora; Younglove, 2004).

2.2 Estimativa de consumo de energia em veículos elétricos

A modelagem do consumo de energia em uma rota é uma tarefa complexa, embora
necessária. Para lidar com essa complexidade, diversos modelos de estimação de energia
têm sido propostos na literatura. Segundo Qi et al. (2018), a estimativa do consumo de
energia de veículos elétricos pode abordar diferentes níveis de detalhe (granularidades),
considerar uma variedade de fatores e seguir abordagens físicas ou baseadas em dados.

A primeira característica diz respeito à granularidade do modelo. Algumas aplica-
ções requerem uma estimativa detalhada do consumo de energia ponto a ponto, enquanto
outras demandam uma aproximação ao nível de conexões entre os nós de entrega. Assim,
os modelos podem ser classificados como microscópicos, que estimam o consumo de ener-
gia em cada ponto específico, mesoscópicos, que utilizam parâmetros médios relativos a
trechos da viagem, ou macroscópicos, que estimam o consumo com base em parâmetros
médios ao longo de uma viagem inteira.

Em relação à granularidade, modelos macroscópicos de estimativa são mais ágeis
e eficientes em termos de cálculo. Contudo, eles não levam em consideração variações
pontuais no consumo de energia, o que pode resultar em falta de precisão quando se
trata de necessidades específicas. Nesses casos, modelos mesoscópicos ou microscópicos
podem ser utilizados. Zhang; Yao (2019) desenvolveram um modelo linear mesoscópico
para veículos elétricos que leva em consideração, dentre outros fatores, as velocidades
médias e o chamado VSP, a potência instantânea por unidade de massa. Com relação
aos modelos microscópicos, segundo Fiori; Ahn; Rakha (2016), eles podem ser divididos
entre modelos forward e backward. Os modelos backward calculam a potência necessária
para possibilitar a tração do veículo nas rodas, e, de forma inversa, calculam a potência
gerada nos motores. Por outro lado, os modelos forward partem da potência gerada pela
interação de componentes internos do motor para dimensionar a energia gasta. Os modelos
forward são amplamente utilizados na indústria para identificar os componentes com maior
impacto no consumo energético do veículo. No entanto, eles tendem a ser mais complexos
do que modelos backward, além de dependerem muito especificamente dos componentes
do veículo modelado.

A segunda característica diz respeito ao modelo utilizado. Existem modelos estatís-
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ticos, também conhecidos como baseados em dados (data-driven), nos quais algoritmos são
utilizados para estimar o consumo de energia por meio do ajuste de parâmetros. Por outro
lado, existem modelos analíticos, nos quais as equações são formuladas de maneira física
e explicável. Além disso, também existem modelos híbridos, que combinam as abordagens
estatística e analítica. Dada a disponibilidade abundante de dados provenientes de siste-
mas de rastreamento de veículos, seria viável criar modelos de consumo de energia que se
baseiam unicamente nos dados, sem a necessidade de pressupostos físicos preestabelecidos.
Um exemplo disso é o estudo realizado por Pamuła; Pamuła (2020) para ônibus elétricos,
onde foi modelado o consumo de energia utilizando redes neurais recorrentes, sem uma
formulação física na estrutura da modelagem. Entretanto, como mencionado em Fiori et
al. (2021), abordagens baseadas em dados, apesar de atrativas por não dependerem de
suposições prévias, possuem a desvantagem de que os parâmetros encontrados nesses mo-
delos geralmente não podem ser extrapolados para outras estimativas, uma vez que são
ajustados especificamente para tipos particulares de veículos, regiões e operações. Nesse
contexto, a imposição de equações físicas aos modelos pode se mostrar vantajosa, uma
vez que melhora a explicabilidade dos parâmetros e sua aplicabilidade a outras situações.

A terceira característica está relacionada ao impacto de variáveis externas no mo-
delo. Devido à influência de diversos fatores no consumo de energia, estes podem ser
explicitamente considerados na modelagem ou afetar indiretamente parâmetros como ve-
locidade e aceleração. Em relação à incorporação de variáveis externas, esse processo varia
conforme a aplicação. Em cenários com dados reais, onde informações sobre velocidade,
congestionamentos e condições da via, como a presença de buracos, estão disponíveis, tais
efeitos podem ser absorvidos no perfil de velocidades e acelerações medidos. Entretanto,
em modelos de simulação, pode-se considerar essas variáveis e incluí-las na modelagem.

De forma geral, a formulação "backward"da potência de tração necessária nas rodas
do caminhão é feita com uma derivação simples da segunda lei de Newton. Os princípios
da dinâmica do veículo podem ser aplicados a qualquer veículo, seja ele elétrico ou não,
explicando também a semelhança com modelos como o CMEM, (Barth; Scora; Younglove,
2004). Tal qual derivado em Abousleiman; Rawashdeh (2015), pode-se assumir que as for-
ças que atuam no veículo são resistência ao rolamento, resistência ao gradiente da via
(força gravitacional tangencial), força de resistência ao ar e a força de aceleração. A soma
dessas forças, multiplicada pela velocidade, nos fornece uma potência instantânea neces-
sária nas rodas para permitir o movimento do veículo. Baseada nas equações dinâmicas,
a expressão final da potência nas rodas, PW (t) é:

PW (t) = [(M(t) · a(t)) + (M(t) · g · sin θ) + (M(t) · g · CR · cos θ)

+(1
2

· ρ · CD · Af · v(t)2)] · v(t)
(2.1)

Em que PW (t) é a potência de tração em W , M(t) é a massa do veículo no instante
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de tempo t em kg, a(t) é sua aceleração em m/s2, v é a velocidade em m/s, g é a aceleração
da gravidade em m/s2, θ é o ângulo da via (grade), CR é o coeficiente de resistência ao
rolamento, CD é o coeficiente de arrasto, ρ é a massa específica do ar em kg/m3 e Af é a
área frontal do veículo em m2. Essa expressão é utilizada em diversos modelos e aplicações,
como Barth; Scora; Younglove (2004), Fiori et al. (2021), Pelletier; Jabali; Laporte (2019)
ou tendo apenas algumas variações em sua formulação, como no VT-CPEM (Fiori; Ahn;
Rakha, 2016).

Além dos elementos que impactam a potência de tração necessária para o veí-
culo, existem fatores que afetam diretamente o uso dos sistemas auxiliares, gerando uma
potência adicional. Dentre os sistemas que consomem tal potência adicional, podemos
citar sistemas de som, luzes do painel e, principalmente, sistemas de HVAC, ou seja, ar-
condicionado e aquecimento. Em temperaturas mais frias ou quentes, o uso de aquecedores
e ar-condicionado se torna mais intensivo. Portanto, a temperatura pode ser considerada
uma variável preditora do uso desses sistemas, tal qual modelado por Fiori et al. (2021).

No contexto de veículos elétricos, outro componente que pode ser incorporado à
modelagem do consumo energético são os sistemas regenerativos. Assim, o consumo de
energia em veículos elétricos pode ser dividido em duas partes: a energia cinética positiva
e a energia cinética negativa, esta última relacionada às características regenerativas dos
sistemas de frenagem do veículo, em inglês regenerative braking system (RBS). O RBS
facilita a recuperação da energia, evitando a dissipação de energia em forma de calor em
sistemas de frenagem baseados em atrito.

O impacto do sistema regenerativo no consumo de energia foi abordado de diver-
sas maneiras na literatura. Shibata; Nakagawa (2015) e Abousleiman; Rawashdeh (2015)
consideraram um coeficiente de regeneração constante, independente da potência, velo-
cidade ou aceleração instantâneas. Por outro lado, uma abordagem alternativa, adotada
por Hayes; Davis (2014), envolve a discretização de intervalos de potência instantânea,
com variação percentual na regeneração em faixas, sendo 100% para valores inferiores a
20kW. Yang et al. (2014) adotaram um modelo no qual o coeficiente de regeneração varia
em função da velocidade, com uma função distinta para velocidades acima e abaixo de
5m/s. Uma outra abordagem, usada no modelo VT-CPEM, Fiori; Ahn; Rakha (2016),
é representar o coeficiente de regeneração como uma função exponencial em relação ao
inverso da magnitude da frenagem.

2.3 Estimativa de Estado de Carga (SOC)

Pode-se dizer que a estimação do estado de carga (State of charge - SOC ) em
veículos elétricos tem um paralelo com a estimação do consumo de combustível em veículos
a combustão interna. No contexto dos veículos a combustão, a estimativa do consumo de
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combustível auxilia na compreensão de como a energia potencial química armazenada
no combustível se converte em energia mecânica, impulsionando o veículo. Da mesma
forma, nos veículos elétricos, a estimativa de SOC está relacionada à carga armazenada
na bateria, que permite a geração de energia elétrica e, subsequentemente, sua conversão
em energia mecânica para a locomoção do veículo. Não existe um consenso formal sobre
a definição de SOC (Zheng et al., 2018; Chang, 2013), mas, em geral, ela é definida como
a razão entre a capacidade atual da bateria Q(t) e sua capacidade nominal QN .

Existem diversos métodos para a estimação de SOC. Segundo Chang (2013), po-
dem ser listados quatro principais categorias de métodos para tal estimação:

1. Mensuração direta: utiliza medidas como diferença de potencial e impedância e
correlaciona tal medida com um valor de SOC (em %), por meio de uma curva. Um
dos métodos mais utilizados nessa categoria é o método de tensão de circuito aberto
(em inglês Open Circuit Voltage Method, OCV ). Em geral, o SOC é modelado com
um relacionamento linear em relação ao OCV para baterias de chumbo-ácido. No
entanto, esse relacionamento não é linear em baterias de íon-lítio, o que impõe o
uso de uma tabela de valores (de-para) de OCV e SOC.

2. Estimativa contabilística ou Book-keeping estimation: integra a quantidade de carga
eliminada ao longo do tempo e a compara com a carga nominal da bateria de modo
a estimar o SOC.

3. Sistemas adaptativos: utilizam diversas entradas, como medidas diretas de tensão
instantânea, histórico de tensão da bateria e temperatura ambiente, para a modela-
gem dessas variáveis a um valor de SOC por meio de um sistema matemático como
uma rede neural ou um filtro de Kalman.

4. Métodos híbridos: combinam as estratégias supracitadas para estimação de SOC.

Segundo Zheng et al. (2018), pode-se dizer que existe um trade-off entre minimi-
zação de erro e complexidade computacional do método de estimação de SOC. Segundo
o mesmo trabalho, existe incerteza tanto na estimação de Q(t), como também no valor
de referência QN . Em relação à capacidade nominal QN , ela pode ter seu valor alterado
pelo envelhecimento e pela temperatura ambiente. É apontado que o fator do envelheci-
mento pode ser ignorado em intervalos curtos de tempo, no entanto, não é raro que as
baterias de íon-lítio operem em um intervalo grande de temperaturas, o que pode influ-
enciar na capacidade disponível. O erro associado à estimação de Q(t) é dependente do
método utilizado, mas tende a depender também de variáveis em comum que afetam o
valor de referência. Ainda de acordo com Zheng et al. (2018), mesmo para um método
simples baseado em OCV, os efeitos de saúde da bateria, temperatura e histerese não
são bem considerados nas tabelas de SOC -OCV. Apesar de muitos métodos de estimação



34 Capítulo 2. Revisão da Literatura

tenham reportado valores de erro baixos (menores que 1%), esses resultados são obtidos
em condições controladas. No contexto de uma operação, ainda segundo o mesmo artigo,
a depender do sistema do veículo, pode ser necessário recalibrar o sistema de estimação
a cada 9 dias para manter o erro do SOC em valores inferiores a 5%.

2.4 Preparação de dados de GPS

Dados de GPS (Global Positioning System) consistem em informações de localiza-
ção obtidas por meio de satélites. Cada vez que um dispositivo, como um celular contendo
um receptor de GPS, registra sua posição, ele coleta dados que incluem as coordenadas
de latitude e longitude, a hora e, frequentemente, a velocidade do veículo.

No entanto, os dados de GPS são conhecidos por serem esparsos e imprecisos em
algumas situações (Laranjeiro et al., 2019). Isso ocorre porque a qualidade dos sinais
de satélite pode ser afetada por obstáculos, como edifícios altos ou áreas com cobertura
deficiente, resultando em leituras imprecisas ou atrasadas. Além disso, o próprio aparelho
celular pode apresentar falhas no componente de sinal.

Algumas indicações de observações errôneas coletadas via GPS incluem velocidades
e acelerações irreais. Segundo Schüssler; Axhausen (2008), velocidades acima de 180 km/h
ou acelerações acima de 10 m/s2 indicam pontos com medidas a serem descartadas.

Segundo Laranjeiro et al. (2019), a limpeza de dados de GPS pode ser feita em
etapas. Em primeiro lugar, é calculado o deslocamento utilizando-se a distância de Ha-
versine entre dois pontos de latitude e longitude determinada. Com essa informação e
o intervalo de tempo, pode ser calculada a velocidade média entre os dois pontos e, em
seguida, a aceleração média. Para a limpeza, pontos com valores extremos de aceleração
e velocidade são retirados. É importante ressaltar que a velocidade média inferida e a ve-
locidade instantânea medida pelo GPS são diferentes. No caso do GPS, o efeito Doppler
é aplicado às ondas de rádio transmitidas pelos satélites para o receptor GPS de modo a
estimar a velocidade do receptor (Zhang et al., 2006).

Segundo Plaudis et al. (2021), mesmo com a retirada de pontos anormais, as rotas
de GPS ainda são pouco precisas e podem ser associadas a dois tipos principais de erros: o
primeiro é associado a um desvio do ponto real e o ponto registrado pelo GPS, o segundo é
um erro de amostragem, em que existe a perda de informação entre dois pontos. De modo
a minimizar os dois tipos de erro, dados de GPS são processados por algoritmos chamados
de map-matching. Esses algoritmos têm a responsabilidade de associar as observações de
GPS à infraestrutura de estradas e vias, tal como ilustrado na figura 7.

Muitos provedores de serviços de map-matching, como Valhalla, Mapbox e GraphHop-
per, utilizam o algoritmo de cadeia de markov oculta (HMM) baseado no trabalho de
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Figura 7 – Ilustração do resultado de um algortimo de map-matching. Os pontos verme-
lhos são os registros de GPS e os azuis são os pontos na trajetória reconstruída.
Fonte: Saki; Hagen (2022)

Newson; Krumm (2009). Este método envolve a alocação de N segmentos possíveis para
uma determinada observação, com base na proximidade espacial (utilizando a distância
de Haversine) entre a observação e os diversos segmentos viários. Além disso, utilizando o
grafo que descreve a estrutura viária do mapa, são calculados custos associados às transi-
ções potenciais entre as arestas representando os estados subsequentes do sistema. Dado
o conhecimento das probabilidades de transição, o algoritmo de Viterbi, que encontra a
sequência mais provável de estados ocultos em um modelo de cadeia de Markov, é aplicado
para determinar a rota mais verossímil nesse contexto.

2.5 Aplicações de Modelos de Energia

Os modelos de estimação de gasto energético de veículos elétricos têm diversas
aplicações a nível operacional e estratégico. Do ponto de vista operacional, os modelos
de energia têm aplicações em eco-routing e em roteirização (Xiao et al., 2021). A nível
estratégico, os modelos podem, entre outros, ser utilizados para definição de instalação de
infraestrutura de carregamento e dimensionamento de frotas (Pelletier; Jabali; Laporte,
2019),.

A aplicação de modelos de energia está relacionada não somente a sua proposição
matemática e derivação de parâmetros estatísticos, mas também a sua aplicação em con-
textos ainda não observados. Nesse sentido, a aplicação de tais modelos pressupõe dados
artificiais, que simulem o que seriam as condições de direção de situações hipotéticas.
Nesse sentido, são utilizados simuladores de modo a estimar os perfis de velocidades e ace-
lerações dos veículos. Um dos simuladores de referência é o FASTSim: Future Automotive
Systems Technology Simulator (Brooker et al., 2015). De forma similar, Genikomsakis;
Mitrentsis (2017) desenvolveram um modelo de simulação integrado ao modelo de energia
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VT-CPEM (Fiori; Ahn; Rakha, 2016) para estimação de consumo energético em rotas
simuladas.

Existe um grande desafio do ponto de vista de integrar tais simulações em proble-
mas de otimização numérica, uma vez que se torna, em muitos casos, computacionalmente
desafiador fazer cálculos para todos os arcos possíveis entre nós de entrega, dada a natu-
reza combinatória do problema. Nesse sentido, algumas simplificações podem ser adotadas.
Xiao et al. (2021) utilizam uma linearização das funções de potência e de cálculo de energia
microscópico, de modo a incluí-las como função de custo de um problema de otimização
linear para roteirização de veículos elétricos. No trabalho de Pelletier; Jabali; Laporte
(2019), é utilizado um modelo de energia microscópico sem regeneração para estimar a
energia consumida entre um arco de um grafo de vias. O grafo de vias é diferente do grafo
de entregas, no grafo das vias cada nó é um cruzamento e os arcos são os segmentos de
via entre os cruzamentos. Nesse contexto, é assumido um perfil de velocidades trapezoidal
entre dois nós da via e, então, é calculada a energia desse arco. No estudo, assume-se o
caminho mais curto da via entre dois nós de entrega e, assim, é feito um cálculo de energia
simplificado entre tais nós de entrega.

Shamma et al. (2022) desenvolveram o Electric Vehicle Path and Range Estimator
(EVPRE), um software de planejamento ótimo de rotas para veículos elétricos. Este soft-
ware utiliza informações de vias, utilizando dados do OpenStreetMaps, Google Maps e
Tomtom, do veículo e do FASTSim e alimenta um modelo físico para estimar o consumo
energético e distância percorrida por uma dada rota. Com isso, é desenhado uma espécie
de mapa de contorno de um veículo ao redor de um ponto. A região "verde", seria a região
mais segura de operação do veículo. O modelo utilizado pelo EVPRE não incorpora uma
modelagem para a regeneração dos freios. Atualmente, alguns algoritmos de otimização
multiobjetivo estão sendo integrados a este software para possibilitar a otimização de ro-
tas que atendam a múltiplos objetivos, tais como tempo, energia e tráfego (Shamma et
al., 2022).
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Figura 8 – Diagrama do sistema do software EVPRE
Fonte: Shamma et al. (2022)

Do ponto de vista estratégico, Rogge et al. (2018) desenvolveram uma metologia
de otimização de custos para scheduling de viagens e carregamento de uma frota de ônibus
elétricos, utilizando uma simulação de consumo de energia como input e, posteriormente,
utiliza um algoritmo genético e um modelo de otimização linear para otimização do sche-
duling e da infraestrutura de carregamento. Por fim, são consideradas as implicações de
custo (TCO - Total cost of ownership) da frota e da infraestrutura escolhida.

Figura 9 – Diagrama da solução de scheduling para frota de ônibus elétrico
Fonte: Rogge et al. (2018)

Por fim, tendo em vista as principais técnicas de tratamento de dados e de modelos
de energia para veículos elétricos e suas aplicações, seguiu-se para a definição de materiais
e métodos deste trabalho.
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3 Materiais e Métodos

A metodologia empregada envolveu o uso de trajetos históricos para a estimação de
coeficientes de regeneração e a associação linear entre a energia estimada e a energia con-
sumida em uma rota, resultando em uma relação análoga a uma eficiência, representada
pelos coeficientes de inclinação e intercepto da regressão linear. Em seguida, parâmetros
mesoscópicos e macroscópicos foram estimados e submetidos a validação em um conjunto
de teste. O procedimento adotado neste estudo pode ser visualizado de forma esquemática
na Figura 10.

Figura 10 – Estrutura metodológica
Fonte: autor



40 Capítulo 3. Materiais e Métodos

3.1 Coleta de dados

3.1.1 Dados de GPS

Os dados das rotas realizadas por veículos elétricos durante os meses de julho,
agosto e setembro de 2023 foram coletados como parte de uma operação de entrega de
bebidas e alimentos. Cada rota foi acompanhada de registros de GPS que incluíam in-
formações sobre a posição e a velocidade do veículo, obtidos por meio de um aplicativo
exclusivo da empresa, instalado nos dispositivos móveis dos motoristas. Esses dados foram
amostrados a uma frequência média de aproximadamente um ponto de rastreamento a
cada 10 segundos.

O GPS fornecia a velocidade e as posições de latitude e longitude para um dado
tempo, essas são as coordenadas que alimentam um algoritmo de map-matching. Com
relação à velocidade, existem duas maneiras de calculá-la usando o GPS. A primeira
envolve medir a diferença de posição ao longo do tempo, já que todas as leituras de
posição do GPS são registradas com informações de horário. Basta dividir a distância
percorrida de Haversine (equação 3.1) entre leituras consecutivas pelo tempo decorrido
entre elas. A segunda abordagem para obter dados de velocidade é utilizar um receptor
GPS e protocolo que forneçam diretamente informações de velocidade. Para os dados
fornecidos, a velocidade estimada com o uso do efeito Doppler foi disponibilizada. Como
a determinação com efeito Doppler é uma velocidade instantânea e tem um erro associado
menor (D'Este; Zito; Taylor, 1999), ela foi escolhida para ser utilizada como entrada no
modelo.

a = sin2

∆lat
2

 + cos(lat1) · cos(lat2) · sin2

∆lon
2


c = 2 · arctan[2

(√
a,

√
1 − a

)
]

Dhaversine = R · c

(3.1)

Em que:

• Dhaversine: A distância entre os dois pontos na superfície da Terra.

• R: raio médio da Terra, que é usado para converter o ângulo central c em uma
distância em quilômetros. O valor típico de R é aproximadamente 6.371 quilômetros.

• ∆lat: Esta é a diferença de latitude entre os dois pontos na superfície da Terra.

• ∆lon: É a diferença de longitude entre os dois pontos na superfície da Terra.

• lat1 e lat2: São as latitudes dos dois pontos comparados.
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Além da distância de Haversine, que leva em conta a curvatura da Terra, outra
abordagem que pode ser utilizada para o cálculo de distâncias entre pontos de GPS
é a conversão de coordenadas de latitude e longitude em um sistema de coordenadas
projetadas (Projected coordinate systems (PCS)), como o EPSG:3857 - Pseudo-Mercator,
que permitem o uso de geometria planar (em duas dimensões). Como o tamanho da
área considerada é de uma área geográfica pequena, as duas abordagens têm resultados
semelhantes.

Neste trabalho, a distância entre dois pontos foi calculada utilizando a fórmula de
Haversine. Para o cálculo de trechos envolvendo vários pontos, a conversão para o sistema
de coordenadas pseudo-Mercator, EPSG:3857, foi empregada.

3.1.2 Dados de pontos de entrega

Foram fornecidos dados de latitude e longitude referentes aos pontos de entrega,
juntamente com a ordem em que foram visitados, o número de caixas entregues e o status
de cada entrega. Para fins de estimativa de peso por pacote, uma amostra da massa (em
quilogramas) associada a cada pacote também foi disponibilizada e o valor de massa por
pacote foi estabelecido em 25 kg, como detalhado abaixo.

3.1.3 Dados de SOC na volta ao centro de distribuição

Para verificar o nível de bateria (SOC ) dos veículos ao final de cada rota, foram
examinados os checklists de chegada dos caminhões, que incluíam uma fotografia (como
as da figura 12) do painel com a indicação do nível da bateria.

Como indicado na Figura 11, cada intervalo entre os pontos equivale a 3,125% do
nível de bateria. A determinação do nível de bateria foi realizada por meio da contagem
do número de intervalos até atingir os quatro pontos de referência específicos, que eram
1; 0,75; 0,5 e 0,25. No entanto, é importante ressaltar que, para valores abaixo de 12,5% e
acima de 0%, apenas uma única marcação intermediária estava disponível para aferição,
limitando a precisão da medição nesse intervalo.

Dado que o propósito dessas fotografias não é registrar o nível de carga da bateria,
mas sim servir como evidência da quilometragem do veículo, em algumas situações, a
avaliação do nível da bateria não era viável, como na Figura 13.

Os valores de SOC que foram obtidos pelas fotografias foram convertidos em ener-
gia consumida por meio da fórmula 3.2, que considera o valor de capacidade nominal da
bateria, ou seja, 105 kWh:

Econsumida = (1 − SOC) · 105 (3.2)
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Figura 11 – Ponteiro de leitura do nível de bateria
Fonte: autor

Figura 12 – Exemplos de fotos de checklist de retorno com indicações de bateria
Fonte: autor

Figura 13 – Exemplos de foto de checklist de retorno sem possibilidade de leitura de nível
de bateria
Fonte: autor
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3.2 Preparação de dados

3.2.1 Limpeza e filtragem inicial de rotas

Um processo de filtragem de rotas foi implementado com o intuito de selecionar
aquelas que atendessem a critérios específicos, que podem ser visto na figura 14 e são
detalhados no texto abaixo.

Figura 14 – Diagrama com quantidade e seleção das rotas para análise
Fonte: autor

Inicialmente, foram disponibilizadas 1317 rotas de veículos elétricos, que partiram
do centro de distribuição de referência. Entretanto, apenas 868 dessas rotas tinham todas
as suas entregas concluídas, sem entregas retornadas ou que foram parcialmente entregues.
Dentre essas rotas, várias não incluíam o trajeto de volta ao centro de distribuição. Apesar
do fato de os motoristas serem orientados a utilizarem o GPS durante toda a rota, o
aplicativo de GPS pode apresentar instabilidade no envio de dados quando é executado
em segundo plano. Uma vez que o aplicativo frequentemente opera em segundo plano
durante o retorno ao centro de distribuição, um número significativo de rotas não continha
informações de GPS com relação à parte do retorno ao CD.

Depois de eliminar as rotas que não atendiam a esses critérios, restaram 333 rotas.
Posteriormente, as rotas que apresentavam inconsistências na ordem das entregas foram
excluídas, pois significa que não era possível associar de maneira coerente os pontos de
entrega aos pontos do trajeto percorrido. Essa inconsistência pode ocorrer devido a pro-
blemas no cadastro da localização de alguns clientes. Esse processo reduziu o número de
rotas para 218.

Em seguida, as rotas foram submetidas a um processo de seleção que considerou
apenas aquelas que aparentavam ser percursos ininterruptos, ou seja, rotas que exibiam
continuidade visual em seu percurso: alguns exemplos de rotas excluídas por esse critério
podem ser vistas na figura 15. Isso resultou em 178 rotas que atenderam a esse critério.
Por último, as rotas que não continham registros de medição de bateria no checklist
de retorno, ou cujos medidores de bateria não permitiam leitura (por exemplo, devido ao
veículo estar desligado), foram excluídas da análise. Esse processo de triagem foi realizado
para garantir a inclusão apenas de rotas completas e consistentes, nas quais a avaliação
do nível de bateria fosse viável, a fim de assegurar a integridade dos dados utilizados no
estudo. No final, restaram 78 rotas que foram utilizadas para análise.

Dentre as rotas selecionadas, foram aplicados procedimentos análogos ao descritos
por Laranjeiro et al. (2019). Ou seja, foram excluídos pontos de velocidades e acelerações
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Figura 15 – Rotas consideradas descontínuas.
Fonte: autor

acima de certos valores dentro do passo a passo descrito no artigo, ou seja, acelerações
maiores do que 10 m/s2 e velocidades superiores a 180 km/h.

3.2.2 Designação de pontos de entrega e estimação da perda de massa ao
longo da rota

Como mencionado, foram selecionadas apenas as rotas que constavam todas as
entregas concluídas. Esse procedimento se justificou devido à complexidade inerente ao
cálculo da massa restante no caminhão em casos de entregas incompletas, pois seria im-
possível saber o número de pacotes entregues. Posteriormente, para cada rota, o processo
de identificação dos pontos de entrega específicos envolveu uma abordagem sequencial,
onde a primeira entrega da rota era localizada ao percorrer a roteirização completa e, a
partir desse ponto, estabeleciam-se as restrições para a busca dos pontos de parada sub-
sequentes apenas na porção restante da rota. Um exemplo de rota com seus pontos de
entrega pode ser visto na Figura 16. Ressalta-se que as rotas nas quais não foi possível
identificar os pontos de entrega na ordem adequada foram excluídas da análise, uma vez
que foram observados alguns desvios nos dados, como registros incorretos de coordenadas
geográficas dos clientes, o que poderia resultar em informações imprecisas e comprometer
a integridade da análise.

Com o propósito de estimar a massa entregue nos pontos de entrega, foi utilizada
uma amostra de dados que continha informações referentes ao número de pacotes e à
massa total. Tal amostra continha 9845 entregas, em que se discriminavam o número de
pacotes e a massa associada a tal número de pacotes. Podemos estimar um valor de massa
específica do pacote para a entrega i como mpacote,i = mpacotes,i

Npacotes,i
, em que Npacotes,i denota o
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Figura 16 – Exemplo de rota (em azul) e pontos de entrega (em vermelho)
Fonte: autor

número de pacotes e mpacotes,i a massa associada. O valor médio de mpacote,i, foi de 25,65
kg. Como pode ser visto na Figura 17, a dispersão de massa por pacote foi relativamente
baixa, com a grande maioria dos pacotes se aproximando do valor médio. Para fins de
estimação de energia, mpacote foi considerado como 25kg.

Figura 17 – Histograma de massa por pacote
Fonte: autor

Dessa forma, em um dado instante de tempo t, a massa do caminhão pode ser
descrita como:

M(t) = M0 + (npacotes,t · mpacote,t) (3.3)

3.2.3 Map-matching

O tratamento de map-matching dos pontos amostrados por GPS envolveu o uso
do serviço Valhalla Meili com base em informações específicas da região sudeste do Bra-
sil, provenientes do OpenStreetMap (OSM) Geofabrik. Ademais, foram obtidos dados de
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altimetria, a fim de calcular o perfil de elevação das vias percorridas. O processo compre-
endeu a configuração de um ambiente Docker para o servidor Valhalla, a preparação e
a integração dos dados OSM da região em questão e a subsequente execução do serviço
Meili para o mapeamento dos pontos de GPS em relação às estradas presentes no OSM.
A saída deste processo consiste em correspondências precisas entre os pontos de GPS e as
vias reais, para cada segmento também foi obtida a angulação em graus da via, ou seja,
a declividade (grade).

3.3 Separação em dados de treino e teste

A separação de dados de teste e treinamento é uma prática fundamental em apren-
dizado de máquina e análise de dados. Ela envolve dividir um conjunto de dados em duas
partes distintas: uma para treinamento do modelo (conjunto de treinamento) e outra para
avaliação do modelo (conjunto de teste). Segundo James et al. (2013), a separação entre
conjuntos de treino e teste deve ser feita por conta do fenômeno de sobreajuste (em inglês,
overfitting) ao qual os modelos estatísticos estão sujeitos, em que os parâmetros do modelo
se ajustam a ruído dos dados.

Das 78 rotas filtradas, 20%, ou seja, 16 delas, foram designadas a um conjunto de
teste. As 62 rotas remanescentes foram utilizadas como conjunto de treino. Em específico,
os dados de treino foram utilizados para estimação dos coeficientes de regeneração e do
coeficiente de ajuste linear com a energia consumida. Os dados de teste foram utilizados
para a mensuração do erro dos modelos.

3.4 Aplicação e estimação de parâmetros de modelos microscópi-
cos

Nesta seção serão destacados os parâmetros dos modelos microscópicos, são eles:

• Coeficiente linear estimado por regressão

• Coeficientes de regeneração ajustados por uma otimização numérica

3.4.1 Dados do veículo e parâmetros do modelo de energia

Os parâmetros utilizados para entrada do modelo estão descritos na tabela 3.



3.4. Aplicação e estimação de parâmetros de modelos microscópicos 47

Parâmetro Significado Unidade Valor Fonte

CR
Coeficiente de

resistência ao rolamento
- 0,01 Demir; Bektaş;

Laporte (2011)

CD Coeficiente de arrasto - 0,7 Demir; Bektaş;
Laporte (2011)

M0 Tara do caminhão kg 6380 Volkswagen (2023)

mpacote Massa por pacote kg/pacote 25 Tabulação da
empresa

npacotes Número de pacotes pacotes Calculado Tabulação da
empresa

a Aceleração m/s2 Calculado GPS

v Velocidade m/s Calculado GPS

g Aceleração da gravidade m/s2 9,8 NIST (2023)

θ Ângulo da via (grade) rad Calculado OpenStreetMaps
(via Valhalla)

ρ Densidade do ar kg/m3 1,225 Picard et al. (2008)

Af Área frontal m2 4,24864 Volkswagen (2023)

Tabela 3 – Parâmetros de entrada do modelo

3.4.2 Energia nas rodas do caminhão

Uma representação de alto nível do fluxo de consumo de energia de um típico
veículo elétrico pode ser verificado na figura 18. Neste trabalho não foram modeladas as
potências associadas aos acessórios, ou seja, potências auxiliares.

Figura 18 – Fluxos de potência num típico veículo elétrico.
Fonte: Genikomsakis; Mitrentsis (2017)

Tal como observado na seção de revisão de literatura, a potência nas rodas do
caminhão pode ser descrita pela equação:

PW (t) = [(M(t) · a(t)) + (M(t) · g · sin θ) + (M(t) · g · CR · cos θ)

+(1
2

· ρ · CD · Af · v(t)2)] · v(t)
(3.4)
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Nesse sentido, a energia necessária para desempenhar tal potência é:

EW =
∫ t

0
PW (t)dt (3.5)

Como a amostragem dos dados é discreta, a expressão 3.5 pode ser aproximada
como:

EW =
N∑

i=0
PWi

· (ti − ti−1) (3.6)

De modo a obter a energia em kWh (unidade usualmente utilizada para capacidade
de baterias veiculares), a unidade de potência na equação 3.6 deve estar em kW (o que
pode ser obtido a partir do resultado da equação 3.4 divido por 1000) e o intervalo de
tempo deve estar em horas.

3.4.3 Sistemas regenerativos

Os sistemas regenerativos de veículos elétricos matematicamente podem ser repre-
sentados como um coeficiente ηRB, que dita a porcentagem de uma potência negativa
(que ocorre em cenários de frenagem ou descidas) que será utilizada para carregamento
do sistema de baterias. Ou seja, a potência instantânea do veículo pode ser expressa como:

P (t) =


PW (t)

ηDL · ηEM · ηBAT

se PW (t) ≥ 0

PW (t) · ηDL · ηEM · ηBAT · ηRB caso contrário
(3.7)

Em que ηDL é a eficiência da direção, ηEM é a eficiência do motor elétrico e ηBAT é a
eficiência da bateria. Para os fins dessa modelagem, não serão estimados ηDL e ηEM e ηBAT ,
e sim, apenas ηRB e um coeficiente β1 a ser detalhado na seção sobre a regressão linear.
Isso foi feito pela dificuldade de se isolar os efeitos de cada um desses coeficientes numa
modelagem com dados com latência, isto é, o intervalo de tempo entre duas observações,
tal qual a dos disponibilizados.

3.4.3.1 Regeneração linear

Na regeneração linear, tal como modelado por Abousleiman; Rawashdeh (2015), o
coeficiente ηRB é constante e independente da aceleração. Assim:

ηRB =

αregeneração linear se a ≤ 0 e PW (t) ≥ 0

0 caso contrário
(3.8)
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3.4.3.2 Regeneração exponencial

Tal como proposto por Fiori; Ahn; Rakha (2016), ηRB pode ser modelado como
uma função da aceleração:

ηRB =

e
−

αregeneração exp

a(t) se a ≤ 0 e PW (t) ≥ 0

0 caso contrário

(3.9)

Em que a(t) é a aceleração instantânea do veículo.

3.4.3.3 Estimativa numérica de coeficientes de regeneração

A calibração de αregeneração exp e αregeneração linear se deu por meio da minimização
de uma função de Goodness-of-fit (GoF). A função GoF utilizada foi o erro quadrático
médio (MSE), enunciado na equação 3.10.

MSE = 1
n

n∑
i=1

(yi − ŷi)2 (3.10)

Nesse sentido, foi utilizado o parâmetro ótimo α∗
RB ∈ [αregeneração exp, αregeneração linear]

que satisfizesse:

α∗
RB = arg min MSE(αRB) (3.11)

O problema de otimização foi resolvido com um solver utilizando o algoritmo de
NelderMead, implementado na biblioteca SciPy (Virtanen et al., 2020).

3.4.4 Regressão linear da energia consumida em função da energia estimada

A significativa latência média de 10 segundos entre os pontos de amostragem pode
resultar em uma representação imprecisa de eventos de aceleração e velocidade do veículo,
levando a um erro na escala do consumo de energia. Além disso, há a omissão das consi-
derações relativas à eficiência do motor, da bateria e do motorista. Com isso, é plausível
que a escala das estimativas de consumo de energia possa não estar devidamente ajustada.
Adicionalmente, a não inclusão das potências dos sistemas auxiliares pode introduzir um
erro sistemático nas estimativas. É importante ressaltar que os coeficientes de arrasto,
atrito e parâmetros semelhantes, utilizados como base para a análise, não estão isentos
de incertezas e erros inerentes. Estes coeficientes são, em sua maioria, derivados de ex-
perimentos realizados em condições específicas, as quais podem diferir substancialmente
das condições do estudo em questão, introduzindo assim uma fonte adicional de incer-
teza nos cálculos. Além disso, o modelo adotado pode não abranger todas as variáveis
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relevantes para a determinação precisa da energia envolvida no sistema, potencialmente
subestimando ou superestimando o consumo.

Deste modo, a fim de diminuir o erro cometido pelo modelo pelos fatores supracita-
dos, realizou-se um ajuste a partir de um modelo linear para estimar o consumo global de
energia para cada rota. Nesse modelo, a variável dependente é representada pela energia
consumida, conforme derivada pelo valor de SOC no painel do veículo. Essa abordagem
foi adotada com o intuito de minimizar os impactos da latência, das ineficiências não
consideradas e do impacto dos sistemas auxiliares, com o objetivo de proporcionar uma
estimativa mais precisa e robusta do consumo energético.

A relação matemática entre duas variáveis, geralmente representadas como Y (va-
riável dependente) e X (variável independente), na regressão linear simples pode ser ex-
pressa da seguinte forma (Devore, 2018):

Y = β0 + β1 · X + ε (3.12)

Em que Y é a variável dependente, X é a variável independente, β0 é o intercepto,
que representa o valor de Y quando X é zero. β1 é o coeficiente linear, que representa
a mudança em Y para uma unidade de mudança em X. ε é o erro, que representa a
variabilidade não explicada pelos termos anteriores. A equação de regressão linear é usada
para encontrar os valores estimados de Y com base nos valores de X e nos parâmetros da
regressão por meio do método dos mínimos quadrados (Devore, 2018; James et al., 2013).

O ajuste das retas foi feito com auxílio da biblioteca statsmodels do Python,
Seabold; Perktold (2010).

De modo a verificar a validade do ajuste, foi feita uma análise dos resíduos da
regressão. Em primeiro lugar, foi verificada a homocedasticidade dos resíduos. Homoce-
dasticidade refere-se à igualdade das variâncias dos resíduos em todos os níveis da variável
independente. Em outras palavras, a dispersão dos resíduos ao longo da linha de regressão
deve ser constante. Essa propriedade pode ser verificada com o teste de Breusch-Pagan.
Além disso, foi verificada a normalidade dos resíduos. A normalidade implica que os resí-
duos se distribuem de acordo com uma distribuição normal, o que é fundamental para a
validade das inferências estatísticas associadas ao modelo. Para tal, foi avaliado o histo-
grama dos resíduos.
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3.5 Estimativa do consumo energético para modelos macroscópi-
cos, mesoscópicos e análise de erros para os modelos desenvol-
vidos
Uma vez ajustados os coeficientes nos dados de treino, foram, então, estimados

parâmetros macroscópicos e mesoscópicos com relação ao consumo energético. Para tal, o
consumo energético dos modelos com regeneração linear, com regeneração exponencial e
sem regeneração foram, ponto a ponto, multiplicados pelos coeficientes β1 ajustados, tal
qual a equação 3.13.

Energiaajustada = Energiacalculada · β1 (3.13)

Em seguida, esse consumo energético foi dividido pela distância em km percorrida
no intervalo correspondente ao ponto, obtendo-se o consumo energético por quilômetro
kWh/km instantâneo, como na equação 3.14.

ECi

kWh

km
, i

 =
Energiaajustada

Dpercorrida
(3.14)

Por fim, esse valor foi dividido pela massa instantânea M(t) do caminhão, obtendo-
se o valor de consumo energético por distância por massa em kWh/km/kg, tal qual a
equação 3.15.

ECespecífica,i

[
kW h
km

kg
, i

]
= EC, i

M(t)
(3.15)

Logo após, foram mantidos os pontos cuja distância percorrida foi maior do que ϵ = 0.01m

e removidos pontos outliers, ou seja, foram considerados apenas os pontos de velocidade
inferida (distância percorrida

tempo percorrido ) entre percentil 10 e percentil 90. Uma vez filtrados os pontos,
foi calculada a média dos valores de consumo por distância, ECi, em kWh/km e consumo
por distância por massa, ECespecífica,i, em kWh/km/kg para cada um dos três modelos:
sem regeneração, com regeneração linear e com regeneração exponencial.

Tendo tais parâmetros estimados via dados de treino, foi feita a validação deles
nos dados de teste. Para o caso dos parâmetros mesoscópicos ECespecífica, a energia foi
estimada da seguinte forma: para cada trajeto Ti entre os nós de entrega oi−1 e oi (sendo
o primeiro e último nó o CD), foi calculado o valor estimado de energia, conforme a
equação 3.16.

Emesoscópica,i = ECespecífica · DTi
· M(t) (3.16)

E, enfim, a energia mesoscópica estimada para a rota inteira se deu pelo somatório de
todos os Ti pertencentes à rota:

Emesoscópica =
∑

i

Emesoscópica,i (3.17)
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Para o caso dos parâmetros macroscópicos, foi calculada a energia estimada multiplicando-
se a distância percorrida em cada rota pelo valor EC de cada modelo estimado (sem
regeneração, com regeneração linear e com regeneração exponencial) e pelo valor nominal
do fabricante, ou seja 105kW h

110km
, que foi chamado de estimador dummy. Para cada uma das

estimativas, foi aferida a distribuição do erro medido (definido tal qual a equação 3.18) e
o valor global de erro quadrático médio, o MSE, tal qual definido na equação 3.10 e do
MAPE, definido na equação 3.19.

e = yreal − ypredito (3.18)

MAPE =
1
n

n∑
i=1

yreal,i − ypredito,i

yreal,i

 · 100% (3.19)

Dados os procedimentos descritos neste capítulo, seguiu-se com a sua aplicação.
Análises de erros, aplicações e aprendizados são discutidos no próximo capítulo.
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4 Resultados e discussão

Neste capítulo, são apresentados os resultados e, subsequentemente, a análise dos
mesmos. Inicialmente, os coeficientes dos modelos de regressão utilizados para estimar o
consumo de energia dos veículos elétricos na frota são expostos. Posteriormente, a valida-
ção desses modelos é abordada, incorporando métricas de desempenho e a avaliação da
precisão das previsões. Por fim, análises derivadas dos modelos de energia são conduzidas.
A primeira é referente ao dimensionamento da frota, com base nos parâmetros macroscó-
picos estabelecidos. Uma segunda análise é a de agrupamento de rotas para tentativa de
extração de parâmetros macroscópicos geograficamente delimitados.

4.1 Coeficientes de modelo sem sistema regenerativo
O modelo que não considera a regeneração de energia foi ajustado aos dados de

treinamento, resultando em um coeficiente de determinação (R2) de 0,731 e um valor F de
163,1, com base em 62 observações. Esse valor indica que o modelo consegue explicar uma
parte considerável da variação dos dados. Além disso, por meio do teste Breusch-Pagan,
foi possível descartar a presença de heterocedasticidade nos resíduos do modelo. Adicio-
nalmente, é importante destacar que o intercepto do modelo não demonstrou significância
estatística a um nível de significância de 5%.

Do ponto de vista físico, é esperado que o coeficiente angular da reta corrija um
erro de escala presente no modelo físico, enquanto o intercepto pode ser interpretado como
um nível de energia residual que permanece constante, independentemente das variações
na energia estimada pelo modelo físico. A não significância dessa energia residual neste
contexto é interessante, já que indica que não há algo como um erro sistemático sendo
cometido. Esse erro sistemático poderia vir de uma estimativa ruim acerca da real capa-
cidade da bateria, por exemplo. A figura com a regressão nos dados de treino pode ser
vista na Figura 19 e os plots de diagnóstico dos resíduos pode ser visto na Figura 20.

Coeficiente Desvio
Padrão

Estatística t P-valor (t) Intervalo de
Confiança a 95%

Intercepto 6.3791 3.323 1.919 0.06 [−0.269, 13.027]

Energia
estimada

0.5274 0.041 12.771 0.00 [0.445, 0.610]

Tabela 4 – Coeficientes estimados em regressão linear de energia gasta em função de ener-
gia estimada sem regeneração
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Figura 19 – Regressão linear de energia gasta em função de energia estimada sem regene-
ração em dados de treino
Fonte: autor

Figura 20 – Gráficos de diagnóstico da regressão linear de energia gasta em função de
energia estimada sem regeneração
Fonte: autor

4.2 Coeficientes do modelo com sistema regenerativo linear

Por meio de otimização utilizando o método de Nelder-Mead, o coeficiente ajustado
para o modelo de regeneração linear (αregeneração linear) foi estabelecido em 1. Fisicamente,
isso significa que, para essa amostragem dos dados, o melhor valor estabelecido para tal
coeficiente considera que, nos momentos de frenagem, o sistema é capaz de recuperar
100% da energia disponibilizada. Esse valor está, provavelmente, superestimado. Younes
et al. (2013) reportou, para um carro, valores de regeneração variáveis, entre 10% a 35%
da energia recuperada, a depender de fatores de direção e rota. Sterkenburg et al. (2011)
adotou valores entre 22% e 40% para um coeficiente linear de regeneração para caminhões
operando numa área urbana, em Roterdão. A hipótese mais plausível para a superestima-
ção do coeficiente de regeneração está associada com os intervalos de integração - o que
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será detalhado em seções subsequentes desse trabalho.

Nessa configuração, a regressão linear resultou em um coeficiente de determinação
(R2) de 0,613 e um valor F de 95,07, baseado em 62 observações. Adicionalmente, o teste
de Breusch-Pagan revelou a ausência de heterocedasticidade nos resíduos do modelo. A
figura com a regressão nos dados de treino pode ser vista na Figura 21 e os plots de
diagnóstico dos resíduos pode ser visto na Figura 22.

Coeficiente Desvio
Padrão

Estatística t P-valor (t) Intervalo de
Confiança a 95%

Intercepto 11.6078 3.866 3.002 0.004 [3.874, 19.341]

Energia
estimada

0.6568 0.068 9.610 0.00 [0.520, 0.794]

Tabela 5 – Coeficientes estimados em regressão linear de energia gasta em função de ener-
gia estimada com regeneração linear

Figura 21 – Regressão linear de energia gasta em função de energia estimada com regene-
ração linear em dados de treino
Fonte: autor

4.3 Coeficientes de modelo com sistema regenerativo exponencial

Através do processo de otimização empregando o método de Nelder-Mead, o coefi-
ciente ajustado para o modelo de regeneração exponencial (αregeneração exp) foi estabelecido
em 0,01. O valor parece dentro de um valor aceitável, sabe-se que Fiori; Ahn; Rakha (2016)
adotou o valor de 0,0411 para um veículo Nissan Leaf. No entanto, sabe-se que a estima-
tiva desse parâmetro pode ser desafiadora, Fiori et al. (2021) encontrou um intervalo de
confiança entre 0,005 e 1 para tal parâmetro em ônibus elétricos.
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Figura 22 – Gráficos de diagnóstico da regressão linear de energia gasta em função de
energia estimada com regeneração linear
Fonte: autor

Sob essa configuração, a regressão linear apresentou um coeficiente de determina-
ção (R2) de 0,606 e um valor F de 92,55, com base em 62 observações. Além disso, a
análise de heterocedasticidade, conduzida por meio do teste de Breusch-Pagan, indicou a
ausência de tal fenômeno nos resíduos do modelo.

Coeficiente Desvio
Padrão

Estatística t P-valor (t) Intervalo de
Confiança a 95%

Intercepto 11.2226 3.850 2.915 0.005 [3.522, 18.924]

Energia
estimada

0.6497 0.067 9.751 0.00 [0.516, 0.783]

Tabela 6 – Coeficientes estimados em regressão linear de energia gasta em função de ener-
gia estimada com regeneração exponencial

4.4 Derivação de parâmetros macroscópicos e mesoscópicos

Com base na filtragem de pontos que apresentam distâncias percorridas acima de
0,01 metros e velocidades estimadas (calculadas como a razão entre a variação da posição
e a variação do tempo) situadas entre o percentil 10 e 90, procedeu-se ao ajuste da
energia calculada para cada modelo, utilizando o coeficiente linear derivado da regressão
linear. Como resultado, obtiveram-se os valores de consumo de energia em quilowatt-hora
por quilômetro (kWh/km) na Tabela 7 e de consumo de energia em quilowatt-hora por
quilômetro por quilo (kWh/km/kg) na Tabela 8.



4.4. Derivação de parâmetros macroscópicos e mesoscópicos 57

Figura 23 – Regressão linear de energia gasta em função de energia estimada com regene-
ração exponencial em dados de treino
Fonte: autor

Figura 24 – Gráficos de diagnóstico da regressão exponencial de energia gasta em função
de energia estimada com regeneração exponencial
Fonte: autor

Modelo Consumo por distância
ajustado (EC), em kWh/km

Sem regeneração 0,854

Regeneração linear 0,9155

Regeneração exponencial 0,950

Tabela 7 – Valores de consumo por distância ajustado (EC) para os modelos
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Modelo
Consumo por distância

ajustado por distância e
massa, em kWh/km/kg

Sem regeneração 9, 415 · 10−5

Regeneração linear 10, 461 · 10−5

Regeneração exponencial 10, 076 · 10−5

Tabela 8 – Valores de consumo por distância e por massa ajustado (EC/kg) para os mo-
delos

4.5 Avaliação de erros em dados de teste

Os modelos que fornecem estimativas de gasto de energia por distância, baseados
no EC (kWh/km), foram categorizados como "macroscópicos". Por outro lado, os modelos
que consideram gasto de energia por distância e massa, baseados no EC/kg (kWh/kg/km),
foram classificados como "mesoscópicos". Além disso, os modelos que realizam a estimativa
de energia ponto a ponto com a inclusão do ajuste do coeficiente linear foram denominados
"microscópicos". O parâmetro de autonomia do fabricante, de 110km para 105 kWh, leva
a um valor de 0,954 kWh/km, e foi denominado com Dummy.

A métrica de erro quadrático médio (MSE) dos erros no conjunto de teste (16
rotas) para cada um dos modelos pode ser consultada na Tabela 9. É possível verificar
que neste caso, o melhor valor foi obtido com o modelo microscópico com a modelagem
exponencial da regeneração.

Com relação a dispersão dos erros no conjunto de teste, a Tabela 10 apresenta
os valores médios, desvio padrão e quartis dos erros. De forma equivalente, a Tabela 11
apresenta esses valores em termos percentuais, ou seja, com relação ao SOC. Tais tabelas,
assim como os boxplots da Figura 25, permitem verificar que apesar dos valores médios
de modelos macroscópicos em alguns casos se mostrarem melhores do que os de modelos
mesoscópicos e microscópicos, a variabilidade dos erros diminui conforme os modelos se
tornam mais granulares.

4.6 Comparação entre os modelos

Devido à incerteza associada aos parâmetros dos modelos e à amostragem reali-
zada a cada 10 segundos, observou-se uma tendência sistemática de superestimação do
valor da energia consumida pelos modelos físicos. Essa tendência de superestimação, por
sua vez, motivou a necessidade de correção, a qual foi implementada por meio de um coe-
ficiente linear ajustado pela regressão linear. Esse coeficiente modela parâmetros que não
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Modelo Erro Quadrático
Médio (MSE)

Dummy 218,42

Sem regeneração (Macroscópico) 143,55

Regeneração linear (Macroscópico) 178,59

Regeneração exponencial (Macroscópico) 213,63

Sem regeneração (Mesoscópico) 199,46

Regeneração linear (Mesoscópico) 167,9

Regeneração exponencial (Mesoscópico) 160,18

Sem regeneração (Microscópico) 186,61

Regeneração linear (Microscópico) 109,09

Regeneração exponencial (Microscópico) 106,96

Tabela 9 – Valores de erro quadrático médio para os modelos em kWh2

Figura 25 – Distribuição de erros dos modelos mesoscópicos e macroscópicos
Fonte: autor

necessariamente foram considerados explicitamente na modelagem, assim como o erro sis-
temático dos parâmetros considerados e calculados. A regressão linear foi selecionada por
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Modelo Média Desvio
padrão

Quartil

1◦ 2◦ 3◦

Dummy -8,13 12,75 -16,01 -10,19 -0,06

Sem regeneração (macroscópico) -1,49 12,28 -9,62 -3,64 6,34

Regeneração linear (macroscópico) -5,55 12,55 -13,52 -7,88 2,43

Regeneração exponencial (macroscópico) -7,86 12,73 -15,75 -9,95 0,20

Sem regeneração (mesoscópico) 7,68 12,24 -1,11 5,39 13,92

Regeneração linear (mesoscópico) 4,37 12,60 -4,63 2,34 10,57

Regeneração exponencial (mesoscópico) 2,43 12,83 -6,67 0,56 8,61

Sem regeneração (microscópico) 10,01 9,60 2,96 9,30 14,33

Regeneração linear (microscópico) 2,68 10,43 -6,34 2,75 6,48

Regeneração exponencial (microscópico) 2,61 10,34 -6,15 2,65 6,39

Tabela 10 – Distribuição de erros (em kWh) dos modelos no conjunto de teste

vários fatores. Em primeiro lugar, por sua simplicidade e fácil interpretabilidade. Além
disso, o modelo físico já incorporava diversas não linearidades no consumo, e, portanto,
mesmo com o consumo energético tendo diversos fatores, a regressão linear mostrou um
funcionamento satisfatório.

O interessante é que, em virtude desse coeficiente ser menor no caso do modelo
que não considerava explicitamente a regeneração, o consumo específico de energia por
quilômetro (kWh/km) desse modelo se revelou inferior em comparação aos modelos que
incorporavam a regeneração de forma explícita no modelo físico. Ou seja, a regeneração
não era considerada, mas o modelo estimou um consumo EC (kWh/km) inferior (mais
eficiente) por conta do ajuste linear. Simplificadamente, a regeneração é um consumo de
energia negativo, então, se esta não é considerada separadamente, ela pode ser indireta-
mente modelada por um coeficiente linear menor. Isso destaca a influência significativa
da incerteza na eficácia dos modelos e ressalta a importância da correção desse viés, a fim
de obter estimativas mais precisas e confiáveis do consumo de energia.

Em termos gerais, notou-se que o modelo de autonomia de fábrica (Dummy) apre-
sentou o pior desempenho, evidenciado por um erro quadrático Médio (MSE) mais elevado.
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Modelo Média Desvio
padrão

Quartil

1◦ 2◦ 3◦

Dummy -18,14 24,22 -34,25 -19,15 -0,13

Sem regeneração (macroscópico) -5,69 21,67 -20,10 -6,60 10,42

Regeneração linear (macroscópico) -13,30 23,23 -28,75 -14,27 3,97

Regeneração exponencial (macroscópico) -17,64 24,12 -33,68 -18,65 0,30

Sem regeneração (mesoscópico) 12,10 19,36 -2,46 11,04 24,07

Regeneração linear (mesoscópico) 5,94 20,72 -9,65 4,80 18,74

Regeneração exponencial (mesoscópico) 2,33 21,51 -13,85 1,16 15,63

Sem regeneração (microscópico) 16,44 13,09 5,81 17,75 26,43

Regeneração linear (microscópico) 2,47 16,30 -12,94 5,08 11,39

Regeneração exponencial (microscópico) 2,35 16,24 -12,60 5,11 11,44

Tabela 11 – Distribuição de erros percentuais (SOC) dos modelos no conjunto de teste

Isso ocorreu porque a autonomia modelada de 110km para 105kWh, leva a um parâme-
tro macroscópico de 0,9545 kWh/km - que se mostra mais conservador do que qualquer
um dos resultados derivados dos parâmetros macroscópicos calculados. Nesse sentido, o
valor de referência se mostrou uma superestimação de consumo mais intensa do que a dos
demais parâmetros, levando a um erro quadrático médio de 218,42 kWh2.

É interessante notar que, no que diz respeito aos modelos macroscópicos, houve
uma tendência geral de superestimação do gasto energético, mesmo com a correção via
coeficiente linear. Contrariamente, os modelos mesoscópicos tenderam a subestimar o
consumo de energia. Quanto aos modelos microscópicos, o modelo sem regeneração apre-
sentou uma inclinação para a subestimação do gasto energético, enquanto os modelos com
regeneração demonstraram uma tendência mais equilibrada, com uma leve propensão à
superestimação. Uma hipótese para isso é de que, no caso dos modelos mesoscópicos, com
a normalização do consumo pela massa, o valor do intercepto - que foi desconsiderado
- se tornaria relevante, levando a uma subestimação no valor consumido de energia. No
caso do modelo macroscópico, como não há uma normalização pela massa, houve uma
compensação positiva do consumo energético global, que leva a tal superestimação.
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No que diz respeito aos modelos macroscópicos, ou seja, na estimativa de um
parâmetro EC em kWh/km, curiosamente, observou-se que o parâmetro do modelo que
não considera a regeneração foi inferior ao dos modelos que incluíam a regeneração. Essa
discrepância pôde ser explicada pela forma como a energia foi ajustada, com base no
coeficiente angular da regressão linear, que foi menor para o modelo sem regeneração.
Além disso, é importante notar que esse modelo, sem regeneração, também foi o que
demonstrou o menor erro quadrático médio (MSE).

Foi observado que o modelo macroscópico que não considerava a regeneração ob-
teve um desempenho superior a todos os modelos mesoscópicos, inclusive teve um MSE
inferior ao do modelo microscópico sem regeneração. Isso é um achado notável e sugere
que, para os propósitos deste estudo em particular, a modelagem macroscópica sem rege-
neração ofereceu uma estimativa relativamente precisa do consumo de energia. Isso parece
sugerir que a um nível macroscópico de análise, a regeneração é melhor modelada como
um coeficiente linear global do que como duas componentes separadas (uma no modelo
físico e uma no coeficiente linear da regressão).

Em uma análise geral, os modelos microscópicos que incorporaram a regeneração
demonstraram ser os que mais se aproximaram do gasto de energia real, apresentando uma
menor dispersão dos valores. Essa descoberta ressalta a eficácia dos modelos microscópicos
na representação das complexas dinâmicas de consumo de energia e regeneração em níveis
mais detalhados de granularidade operacional, contribuindo para estimativas mais precisas
e confiáveis do consumo energético. Esses modelos incorporam mais variáveis e situações
em sua modelagem, o que dá a possibilidade de um calculo mais preciso do consumo
energético.

4.7 Fontes de ruído e erro no modelo

A presença de erros de magnitude considerável nos modelos desenvolvidos decorre
da complexa interação de diversos fatores de incerteza intrínseca a essa análise. Em pri-
meiro lugar, o alto intervalo de integração (10s) se mostra excessivamente elevado para
estimativas precisas. Outro fator reside nas medições de velocidade obtidas por meio do
Sistema de Posicionamento Global (GPS), cuja precisão intrínseca frequentemente é afe-
tada por variabilidades ambientais e técnicas. Além disso, as medições de posição do GPS,
mesmo após correção por meio de técnicas de map-matching, ainda subsistem como fonte
de incerteza. Outro elemento que gera erros é a incerteza associada à massa individual
de cada pacote transportado, que foi estimado em 25kg, porém não é um valor padroni-
zado. Adicionalmente, a utilização de sistemas auxiliares, como o ar condicionado, não foi
considerada, o que também pode induzir erros. Além disso, os coeficientes da literatura,
como arraste e atrito, também podem induzir erros. Por fim, os próprios dados da variá-
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vel dependente estão sujeitos a erros decorrentes da imprecisão de medição de SOC e da
leitura do painel na fotografia do checklist de retorno.

4.7.1 Energia consumida

Medir com precisão a carga nas baterias, particularmente em baterias de veículos
elétricos, é um desafio complexo. A precisão na medição do estado de carga (SOC ) é
essencial para garantir a confiabilidade da estimativa da autonomia e para otimizar o
funcionamento do veículo elétrico. No entanto, a medição da carga nas baterias está
inerentemente associada a erros. Como dito na seção de revisão de literatura, segundo
Zheng et al. (2018), os fabricantes de veículos elétricos costumam estabelecer um erro
máximo de 5% no SOC. No entanto, apenas alguns dias sem uma recalibragem do sistema
pode levar a um erro a um nível maior do que este.

Além disso, a leitura do valor do SOC no painel foi feito via um mostrador de
ponteiro em uma foto tirada no momento de retorno do caminhão ao centro de distribui-
ção. Não obstante, as circunstâncias em que essas imagens são obtidas não obedecem a
uma padronização, resultando em ângulos variáveis que induzem o efeito de paralaxe de
maneira não uniforme. Tal cenário, por si só, pode suscitar leituras imprecisas. Adicional-
mente, uma série de desafios adicionais se apresentam, como, por exemplo, condições de
iluminação insuficientes ou a presença de reflexos na superfície do mostrador, os quais po-
dem comprometer a precisão das leituras. De forma complementar, é relevante mencionar
que os marcadores no mostrador do ponteiro são discretizados em intervalos de 3,125%,
inviabilizando, desse modo, a obtenção de valores de SOC com maior precisão do que
1,5625%.

4.7.2 Energia estimada

A energia estimada utilizou primariamente o modelo de energia baseado na po-
tência necessária para promover tração do veículo. Todas as variáveis de entrada desse
modelo têm incertezas associadas, tanto as diretamente medidas como os coeficientes uti-
lizados. Em específico, destacamos os erros associados à estimação de massa, velocidade
e aceleração.

4.7.2.1 Estimação de massa

No cálculo da massa do veículo, uma média de 25 kg por pacote foi adotada como
um valor de referência. No entanto, ao examinarmos a amostra disponível, notou-se que,
em algumas instâncias, esse valor pode apresentar desvios significativos em relação a
massa real dos pacotes. Apesar do desvio padrão ser relativamente baixo, com apenas 2
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kg, foram identificados casos extremos nos quais os pacotes pesavam tanto quanto 40 kg
ou tão pouco quanto 700 gramas.

4.7.2.2 Estimação de velocidade e aceleração e associados ao intervalo de integração

Como já mencionado na seção de metodologia, existe um erro associado a medição
de velocidades com efeito Doppler pelo sistema de GPS.

Outro fator digno de nota é que o cálculo da aceleração foi efetuado numericamente
a partir dos dados de velocidade, em vez de ser realizado através de um sensor fisicamente
acoplado ao caminhão. Isso resulta na utilização de uma aceleração média em vez de uma
aceleração instantânea.

De fato, é reconhecido que as acelerações em veículos geralmente seguem um pa-
drão caracterizado por picos e vales. Segundo Bokare; Maurya (2017), para caminhões em
velocidades entre 20 a 30 km/h, o tempo médio de aceleração é de 11 segundos e o de
desaceleração, 16 segundos. Uma amostragem com latência média de 10 segundos, parece
estar dentro do tempo médio esperado para acelerações e desacelerações em velocidades
urbanas.

No entanto, o fator que parece induzir o maior erro na modelagem é a alta latência
dos dados, que foi de, em média, 10 segundos. No trabalho de Zhang et al. (2020), foram
utilizados dados amostrados com uma latência de 1s (1Hz), ou seja, 10× mais frequente
e, ainda assim, foram observados erros percentuais médios (MAPE) de 12% na energia
consumida. Com uma amostragem também de 1Hz, como feita por Fiori et al. (2021), o
erro percentual médio foi de apenas cerca de 1%. O problema principal seria considerar a
potência compatível com a velocidade inicial como constante durante todo o intervalo de
integração.

4.8 Análises derivadas dos modelos de energia

4.8.1 Dimensionamento de frotas com autonomia fixa (parâmetro macroscó-
pico)

Foi considerado um modelo simplificado de dimensionamento de frota, em que o
número de veículos necessários é calculado como a demanda diária (em km) dividido pela
capacidade de cada veículo (em km), como na equação 4.1. A capacidade de cada veículo é
definida como a capacidade da bateria (em kWh) dividida pelo consumo médio de energia
(em kWh/km) (equação 4.2).

Este modelo pressupõe, em primeiro lugar, que a demanda diária de quilômetros é
constante ao longo do tempo, implicando que a frota é dimensionada para atender a essa
demanda média diária. Nesse sentido, não são consideradas variações na demanda ao longo
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do dia ou da semana, o que pode levar a sub ou superutilização da frota em diferentes
momentos. A falta de consideração de tais variações podem ter implicações significativas
em termos de impacto ambiental e econômico, uma vez que a frota pode ser subutilizada
em muitos momentos, resultando em maior consumo de recursos e custos mais elevados.
Além disso, o modelo considera o consumo EC (kWh/km) como base para determinar a
autonomia dos veículos, sem levar em consideração fatores adicionais que podem afetar de
maneira significativa a operação de uma frota. Dentre as omissões notáveis, estão a falta
de consideração das restrições associadas à velocidade média do veículo e à duração dos
turnos de trabalho dos motoristas e ajudantes, aspectos cruciais para o funcionamento
eficiente e adequado de uma frota de veículos.

Nveículos = Demanda
Autonomia

(4.1)

Autonomia = Capacidade bateria
EC

(4.2)

Como enunciado nas equações, o principal aspecto avaliado é o impacto de con-
sumo fixo no dimensionamento de uma frota. No entanto, como é sabido haver uma grande
variação na autonomia esperada de um veículo elétrico, analisamos a relação entre a pro-
babilidade de uma dada autonomia ser ultrapassada, o que levaria à parada do caminhão
em rota, e o tamanho da frota dimensionada com essa autonomia. Nesse sentido, é in-
troduzido o conceito de um erro do tipo 1, o qual denota a probabilidade de o consumo
efetivo de energia por quilômetro superar um valor preestabelecido, em outras palavras, a
probabilidade de o veículo esgotar a bateria quando se assume bateria com carga. O erro
do tipo 1 pode ser compreendido como a incerteza associada à possibilidade de os veícu-
los requererem uma quantidade de energia superior à prevista, o que, operacionalmente,
acarretaria em guincho ou na não entrega de todos os pacotes. A probabilidade deste erro
pode ser denotada como α. Além deste erro, também existe o erro do tipo 2, que denota-
ria a probabilidade de se assumir um consumo superior ao que foi de fato executado, em
outras palavras, quando se assume que a bateria estaria esgotada, mas ainda há carga. O
erro do tipo 2 pode levar a ineficiências, mas seu impacto em relação a imprevistos na
operação é menor. Nesse sentido, seguiu-se um dimensionamento tendo em vista apenas
o erro do tipo 1.

Sabendo-se que o consumo EC em kWh/km segue uma determinada distribuição,
podemos estabelecer um valor de probabilidade de erro do tipo 1 (α) e derivar um limite
(threshold) a ser considerado para EC e, com a equação 4.2, calcular a autonomia do
veículo. Esse relacionamento entre α e EC pode ser visto na Figura 26.

A partir de tal autonomia, procede-se ao dimensionamento da frota, mesmo em
cenários onde o consumo efetivo pode, ocasionalmente, exceder ligeiramente as estimativas
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Figura 26 – Ilustração de relação entre EC e α
Fonte: autor

iniciais. Um valor maior de α torna o valor de EC mais agressivo, aumentando a autonomia
esperada. Isso pode levar a altos custos operacionais relativos à parada do veículo em rota.
Por outro lado, um valor pequeno de α pode levar a uma estimativa de consumo mais
cautelosa, o que por sua vez, diminui a autonomia esperada e poderia resultar em uma
frota superdimensionada.

A distribuição dos consumos reais em kWh/km nos dados de teste pode ser visu-
alizada na Figura 27. Para avaliar a normalidade desses dados, foi conduzido o teste de
Shapiro-Wilk, resultando em um p-valor de 0,785. Portanto, com base nesse valor de p,
considerou-se que os dados seguem uma distribuição normal. Além disso, a distribuição
dos dados, conforme estimada via Kernel Density Estimation (KDE), apresenta uma notá-
vel semelhança com uma distribuição normal, como pode ser observado na Figura 28. Na
figura do kernel estimado, destacam-se linhas representando os valores de EC estimados
pelos modelos macroscópicos.

Foi calculada o consumo EC em kWh/km compatível com diferentes probabili-
dades de de erro do tipo 1 (α). Para tal, foi calculada a média e desvio padrão de tal
consumo na amostra de teste, obtendo-se os valores de 0.84 kWh/km e 0.18 kWh/km
respectivamente. Considerando que os consumos médios de energia por distância (EC)
seguem uma distribuição t com 15 graus de liberdade, dada a normalidade da amostra,
foi calculado o consumo EC compatível com um dado α. Para tal, foi calculado o valor t
correspondente a α com 15 graus de liberdade, e depois esse valor foi multiplicado pelo
desvio padrão de EC e somado com sua média, tal como descrito na equação 4.3.

EC = (Student-t(α, 15) ∗ sEC) + ĒC (4.3)

Procedeu-se ao dimensionamento de frotas para um valor fixo de quilômetros diá-
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Figura 27 – Histograma de consumo kW h
km

em dados de teste
Fonte: autor

Figura 28 – KDE (Kernel Density Estimation) de consumo kW h
km

em dados de teste
Fonte: autor

rios. Foram estimadas frotas para os seguintes valores de α: 0,5; 0,4; 0,35; 0,3; 0,47 (α
correspondente a EC sem regeneração); 0,34 (α correspondente a EC regeneração linear);
0,27 (α correspondente a EC regeneração exponencial); 0,263 (α correspondente ao modelo
Dummy); 0,2; 0,15; 0,1; 0,05; 0,01; 0,005; 0,001. O valor relativo à frota para α de 0,001 foi
estabelecido como 100%, e as frotas relativas aos outros valores de α foram representadas
proporcionalmente a essa frota (α de 0,001). O gráfico que ilustra essa distribuição pode
ser visualizado na Figura 29, também é possível verificar os dados na tabela 12.
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Figura 29 – Percentual (%) de caminhões dimensionados para cada α em relação ao di-
mensionamento do menor α avaliado (αmin) - αmin = 0.001
Fonte: autor
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α Consumo (kWh/km) Número relativo de caminhões (%)

0.001 1.51 100.0

0.005 1.37 90.7

0.010 1.30 86.6

0.050 1.15 76.6

0.100 1.08 71.7

0.150 1.03 68.6

0.200 1.00 66.1

0.262 0.96 63.6

0.270 0.95 63.3

0.300 0.94 62.2

0.338 0.92 60.9

0.350 0.91 60.5

0.400 0.89 58.9

0.472 0.85 56.7

0.500 0.84 55.9

Tabela 12 – Resultado do dimensionamento de frota com base no erro do tipo 1

Dada a alta variabilidade do consumo EC de energia por distância, em kWh/km,
observado nas rotas, é notável que a variação na tolerância ao erro do tipo 1 leva a um
dimensionamento muito diferente da autonomia do caminhão e, consequentemente, no
dimensionamento da frota.

No caso de assumir uma autonomia média de 1.86 kWh/km, ou seja, uma auto-
nomia de 56,43 km, compatível com a operação atual do CD, a probabilidade de erro do
tipo 1 seria inferior a 0,1 % segundo a distribuição da amostra de teste.

Segundo o modelo, uma erro do tipo 1 de 0,1 % presume uma autonomia de 69
km, ao passo que um erro de 5% presume uma autonomia de 91 km. Essa diferença pode
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levar a um impacto de 23% no tamanho dimensionamento da frota.

De fato, o dimensionamento da frota com base nos modelos macroscópicos de
autonomia fixa não é a opção ideal. Isso se deve ao fato de que as chances de incorrer
em erros do tipo 1 são significativamente altas, resultando em na necessidade de um
parâmetro demasiadamente conservador, que pode levar a uma frota superdimensionada.

Nesse contexto, considerar modelos mais precisos, em que a probabilidade de erro
do tipo 1 é menor, como os modelos microscópicos, pode ser uma abordagem vantajosa.
Especificamente, a inclusão de uma margem de segurança, chamada de "buffer", nas esti-
mativas dos modelos microscópicos pode ser benéfica.

No entanto, para que essa abordagem seja viável, é fundamental que o planeja-
mento de rotas utilize esses modelos microscópicos em vez de depender de um parâmetro
de autonomia fixa, como é comum. Incorporar esses modelos no planejamento de rotas é
um desafio computacional complexo e oneroso, mas já foi realizado em estudos anteriores,
exemplificados por pesquisas como a de Xiao et al. (2021).

4.8.2 Clusterização de rotas

Apesar da alta dispersão do consumo (EC) das rotas, uma estratégia possível para
mitigar a alta dispersão do erro de modelos macroscópicos poderia envolver uma mode-
lagem regional desses parâmetros. Isto é, delimitando áreas geográficas e considerando
variáveis específicas, como declividade e velocidade média seria possível ter valores mé-
dios variáveis de consumo, que seriam utilizados a depender da região de entrega de uma
dada rota. Nesse contexto, uma tentativa de abordagem semelhante ao que foi feito no
trabalho de Velázquez-Martínez et al. (2016) foi implementada para agrupar (clusterizar)
as rotas a partir dos dados de treino, buscando identificar valores médios de consumo. Pos-
teriormente, essa modelagem seria validada em rotas de teste, permitindo a avaliação da
eficácia da consideração regional na redução da dispersão dos parâmetros macroscópicos
e, consequentemente, aprimorando a precisão das estimativas de consumo. No entanto,
para os dados do presente trabalho, essa segmentação não se mostrou válida, dada a falta
de variabilidade em locais de entrega.

Em primeiro lugar, foram consideradas algumas variáveis para clusterização de
rotas, como número de paradas, ponto de maior distância até o CD, coeficiente de rege-
neração exponencial médio, variação no grade e massa de entrega em cada uma das rotas
de treino do modelo. Foram avaliadas diversas combinações de tais variáveis para clusteri-
zação utilizando o algoritmo K-means, que organiza dados em grupos(clusters) com base
em centroides (James et al., 2013). Posteriormente, os clusters eram agregados conforme
a metodologia proposta em Velázquez-Martínez et al. (2016), em que era feito um teste
de Tukey e clusters sem diferença significativa de consumo eram agregados. No entanto,
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ao final do procedimento, os clusters colapsavam sempre em um mesmo cluster. Isso pro-
vavelmente ocorreu devido a uma baixa variação de localização de entrega e condições de
operação. Uma das tentativas de clusterização pode ser vista na Figura 30, onde pode ser
vista a sobreposição das distribuições de consumo de energia pelos clusters e, portanto, a
não separabilidade destes.

Figura 30 – Tentativa de clusterização de rotas
Fonte: autor

Apesar de esta metodologia não ter produzido os resultados desejados, ela ainda
poderia ser aplicada caso mais rotas e com maior variabilidade de região de entrega
pudessem ser incorporadas.

4.9 Síntese de aprendizados

Com os dados obtidos durante a realização desse trabalho, foi verificado que con-
forme a granularidade dos modelos é refinada, eles tendem a ter uma dispersão de erro
menor. Para termos comparativos, dentre os melhores modelos de cada granularidade -
isto é, o microscópico e mesoscópico com regeneração exponencial e o macroscópico sem
regeneração - o modelo microscópico obteve um intervalo interquartil dos erros 18% menor
do que o modelo mesoscópico e 22% menor do que o modelo macroscópico.
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Nesse sentido, pode-se afirmar modelos microscópicos tem uma confiabilidade
maior e seu uso precederia uma carga de segurança (buffer) menor e, para um mesmo
buffer, apresentaria uma probabilidade de falha menor do que os modelos das demais
granularidades.

No entanto, o uso de tais modelos impõe dificuldades tanto do ponto de vista
operacional como do ponto de vista computacional. Tais dificuldades dizem respeito à
complexidade de sua aplicação. Computacionalmente, seria necessário reformular os al-
goritmos de roteirização de modo a incluir estimativas com granularidade mais refinada
por meio de simuladores. Além disso, pouco adiantaria realizar tais simulações caso a
operação diferisse em demasia do que foi simulado. Nesse sentido, seria necessário con-
trolar rigorosamente a ordem das entregas e as rotas realizadas. Sabe-se que tal controle
operacional se mostra um grande desafio por si só.

Além disso, para planejamentos de nível mais estratégico, como localização de CDs
e dimensionamento de frotas é ainda mais difícil incluir modelos microscópicos, dadas as
incertezas inerentes desse tipo de planejamento, em que, frequentemente, não se possui
a priori os locais de entrega e rotas a serem realizadas de forma detalhada. Para esses
casos de uso, uma estimação macroscópica com agrupamentos, tal como foi tentado neste
trabalho, poderia se mostrar benéfica.

A síntese do trade-off entre confiabilidade e complexidade dos modelos de estima-
ção de energia em veículos elétricos (BEV s) pode ser vista na Figura 31.

Figura 31 – Ilustração sobre o trade-off entre confiabilidade e complexidade de modelos
de energia.
Fonte: autor

Resumindo, tal como apresentado na introdução, este trabalho teve como objeti-
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vos a aplicação de modelos físicos microscópicos de energia com diferentes modelagens de
regeneração, corrigidos por um coeficiente linear derivado estatisticamente. Além disso,
derivaram-se parâmetros mesoscópicos e macroscópicos a partir da aplicação desses dife-
rentes modelos microscópicos. Analisaram-se os erros, limitações e aplicações desses mode-
los neste capítulo. As conclusões finais e sugestões para futuras pesquisas serão abordadas
no próximo capítulo.
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5 Conclusões e próximos desenvolvimentos

5.1 Conclusão

A transição para veículos elétricos representa um avanço significativo em direção a
uma logística mais sustentável. No entanto, é importante reconhecer que ainda persistem
desafios significativos em relação ao uso desse tipo de veículo, sendo a restrição de autono-
mia uma das questões mais proeminentes. A autonomia limitada das baterias em veículos
elétricos pode gerar preocupações em relação a possíveis interrupções na rota, especial-
mente em cenários em que não há infraestrutura adequada para recarga. As consequências
associadas ao descarregamento da bateria durante uma rota podem variar desde atrasos
operacionais até a necessidade de resgates, impactando negativamente a eficiência e a
confiabilidade das operações.

A mitigação dessas dificuldades muitas vezes requer um planejamento rigoroso da
rota e uma estimativa precisa da energia necessária para a viagem. Nesse sentido, o uso de
modelos macroscópicos, ou baseados numa autonomia fixa, tem um erro consideravelmente
maior do que modelos microscópicos. Os modelos desenvolvidos nesse trabalho comprovam
essa realidade, com o erro quadrático médio do modelo microscópico com regeneração
exponencial de 106,96 kWh2, ao passo que o mesmo modelo em escala macroscópica
obteve um erro de 213,63 kWh2. De forma a mitigar o impacto operacional do erro de
tais modelos, podem ser adotados buffers de energia reserva. Tais buffers endereçam o
problema da probabilidade de subestimação da energia gasta pelos modelos (erros do tipo
1), mas acarretam em custos operacionais e subutilização da frota.

A incorporação de modelos com maior precisão pode diminuir o impacto econômico
dos buffers, mas sua implementação é desafiadora. Na literatura, podem ser encontrados
exemplos de implementação algoritmos de roteamento que incorporam modelos de estima-
ção precisos, como microscópicos e mesoscópicos, no roteamento com o uso de simulações,
que consideram fatores como topografia, carga, velocidade e condições ambientais para
prever o consumo de energia.

No entanto, mesmo com um roteamento que tenha uma precisão e exatidão alta
para o consumo de energia, as incertezas operacionais, como ordem em que serão feitas as
entregas, distâncias entre os nós de entrega e condições de trânsito, ainda podem gerar uma
variabilidade considerável no consumo de energia. Até que uma infraestrutura mais abran-
gente esteja disponível, que inclua postos de recarga, veículos de resgate e mecanismos de
troca de bateria emergencial, a operação segura de veículos elétricos pode depender da
implementação de estratégias de superdimensionamento de frotas e subdimensionamento
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de distâncias por rota. Embora essas estratégias possam fornecer uma solução temporária,
elas também acarretam custos financeiros significativos para as operações.

Ainda que fosse atingido um cenário em que todos esses aspectos de infraestrutura
estejam devidamente implementados para dar suporte aos veículos elétricos, é inegável que
a operação desses veículos introduz uma complexidade que não necessariamente encontra
um paralelo direto com os veículos a combustão. A gestão da autonomia, o carregamento
e a manutenção das baterias, as flutuações nas condições de energia são elementos intrín-
secos à operação de veículos elétricos que demandam abordagens distintas de modelagem.

Nesse contexto, é fundamental que os modelos econômicos e ambientais que ava-
liam o impacto das operações com veículos elétricos incluam todos esses fatores. Em
específico, tal como apontado nesse trabalho, é importante considerar as incertezas e pa-
râmetros de segurança associados a tais incertezas na modelagem financeira e ambiental
da operação eletrificada. Além disso, a consideração de tais elementos é importante para
a adaptação de práticas de gerenciamento para promover uma transição bem-sucedida
para veículos elétricos em uma variedade de contextos operacionais. A análise completa e
holística desses fatores é um passo fundamental em direção a uma logística mais susten-
tável e eficiente, permitindo a tomada de decisões informadas e estratégicas na adoção de
veículos elétricos.

5.2 Próximos desenvolvimentos
Os futuros avanços seguintes a esse trabalho podem envolver a implementação

dos modelos microscópico híbridos físico-estatísticos que foram desenvolvidos neste tra-
balho no contexto de simulação de rotas, com sua posterior integração em modelos de
roteirização e tomada de decisões sobre a localização de Centros de Distribuição (CDs) e
infraestrutura de carregamento.

Adicionalmente, seria vantajoso conduzir experimentos fatoriais com uma ampla
variação operacional e a coleta de dados de alta frequência para a validação das entradas do
modelo. Dentre esses dados capturados com alta frequência, preferencialmente constariam
o perfil de velocidades assim como o SOC (nível da bateria) ao longo das rotas. Com tais
dados, também seria possível conduzir a análise de clusterização de rotas que não foi
possível viabilizar de forma satisfatória nesse estudo. Tal coleta também poderia seguir
com a validação dos coeficientes de regeneração exponencial e linear que foram obtidos
neste trabalho.
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Apêndice A - Ambiente e código

Código Python de tratamento dos dados de GPS

Utilizando a biblioteca GeoPandas do Python, foi aplicado o seguinte tratamento
nos dados:

l o c a t i on s_va l i d = (
l o c a t i on s_va l i d . query ( " d i s t r i bu t i on_cente r_ id == 401 " )
. a s s i gn (

location_timestamp=pd . to_datetime ( l o c a t i o n s [ "
location_timestamp " ] ) ,

)
. so r t_va lues ( by=[ " tour_id " , " location_timestamp " ] ,

ascending=True )
. a s s i gn (

dspeed=lambda dfa : dfa [ " speed " ] . d i f f ( ) ,
dtime=lambda dfa : dfa [ " location_timestamp " ] . d i f f ( ) .

dt . tota l_seconds ( ) ,
f r equency=lambda dfa : 1 / dfa [ " dtime " ] ,
day=lambda dfa : dfa [ " location_timestamp " ] . dt . date ,
weekday=lambda dfa : dfa [ " location_timestamp " ] . dt .

day_name ( ) ,
geometry=lambda dfa : dfa . apply (

lambda row : Point ( row [ " l ong i tude " ] , row [ "
l a t i t u d e " ] ) , a x i s=1

) ,
previous_geometry=lambda dfa : dfa . groupby ( " tour_id " )

[ " geometry " ] . s h i f t (1 ) ,
p r ev i ou s_ la t i tude=lambda dfa : dfa . groupby ( " tour_id " )

[ " l a t i t u d e " ] . s h i f t (1 ) ,
prev ious_long i tude=lambda dfa : dfa . groupby ( " tour_id "

) [ " l ong i tude " ] . s h i f t (1 ) ,
d i s t anc e=lambda dfa : apply_harvers ine_distance ( dfa ) ,
inferred_speed_ms=lambda dfa : ( dfa [ " d i s t ance " ] / dfa

[ " dtime " ] ) . mask (
dfa [ " dtime " ] . i sna ( ) | dfa [ " dtime " ] == 0 , 0

) ,



86 Referências

inferred_speed_kmh=lambda dfa : dfa [ "
inferred_speed_ms " ] ∗ 3 . 6 ,

mass_id=lambda dfa : (
dfa [ " location_timestamp " ] . dt . s t r f t i m e ( "%Y%m%d" )

) . astype ( str )
+ "_"
+ ( dfa [ " l i c e n s e _ p l a t e " ] ) . astype ( str ) ,
inferred_dspeed_ms=lambda dfa : (

dfa [ " inferred_speed_ms " ] − dfa . groupby ( " tour_id "
) [ " inferred_speed_ms " ] . s h i f t (1 )

) ,
in f e r red_acce l e rat ion_ms2=lambda dfa : (

dfa [ " inferred_dspeed_ms " ] / dfa [ " dtime " ]
) . mask ( dfa [ " dtime " ] . i sna ( ) | dfa [ " dtime " ] == 0 , 0) ,
in ferred_acce lerat ion_kmh2=lambda dfa : dfa [ "

in f e r red_acce l e rat ion_ms2 " ] ∗ 3 . 6 ,
)
. query ( " inferred_speed_kmh < 150 and

inferred_acce lerat ion_kmh2 < 10 " )
. drop ( columns=[ " geometry " , " previous_geometry " ] )

)

def apply_harvers ine_distance ( df ) :
lon1 , la t1 , lon2 , l a t 2 = (

df [ " prev ious_long i tude " ] . va lues ,
df [ " p r ev i ou s_ la t i tude " ] . va lues ,
df [ " l ong i tude " ] . va lues ,
df [ " l a t i t u d e " ] . va lues ,

)
lon1 , la t1 , lon2 , l a t 2 = map(np . radians , [ lon1 , la t1 , lon2 ,

l a t 2 ] )
dlon = lon2 − lon1
d l a t = l a t 2 − l a t 1
a = np . s i n ( d l a t / 2 . 0 ) ∗∗ 2 + np . cos ( l a t 1 ) ∗ np . cos ( l a t 2 ) ∗

np . s i n ( dlon / 2 . 0 ) ∗∗ 2

c = 2 ∗ np . a r c s i n (np . s q r t ( a ) )
km = 6367 ∗ c
m = km ∗ 1000
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return m

Código Python para designar pontos de parada nas rotas
def get_route_del ivery_points_matches ( stop_points , route ) :

stop_points_3857 = stop_points . to_crs ( c r s =3857)
route_3857 = route . copy ( ) . to_crs ( c r s =3857)
l a s t_t s = " 1990−01−01 10 :41 :11+00:00 "
matches = [ ]
for i in range ( stop_points_3857 . shape [ 0 ] ) :

route_3857 = route_3857 . query ( " location_timestamp >
@last_ts " )

stop_point = stop_points_3857 . i l o c [ i : i + 1 ]
match = stop_point . s j o i n_nea r e s t (

route_3857 , d i s tance_co l=" d_point " , how=" l e f t " ,
max_distance=100

)
match = match . sor t_va lues ( by=[ " location_timestamp " ] ,

ascending=True )
las t_index_r ight = match . i l o c [ 0 ] [ " index_right " ]
l a s t_t s = match . i l o c [ 0 ] [ " location_timestamp " ]
matches . append ( l a s t_t s )

return matches

def add_mass_to_route ( stop_points , route ) :
l a s t_t s = get_route_del ivery_points_matches ( stop_points ,

route )
route = (

route . merge (
stop_points . a s s i gn ( location_timestamp=pd . to_datetime

( l a s t_t s ) ) . r e index (
columns=[ " location_timestamp " , " volume_packages "

]
) ,
how=" l e f t " ,
on=" location_timestamp " ,
v a l i d a t e=" 1 :1 " ,

)
. so r t_va lues ( by=" location_timestamp " )
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. a s s i gn (
delta_mass=lambda dfa : dfa [ " volume_packages " ] . f i l l n a

(0 ) ∗ 5 ,
total_loaded_mass=lambda dfa : dfa [ " delta_mass " ] . sum

( ) ,
current_truck_mass=lambda dfa : (6380 + dfa [ "

total_loaded_mass " ] )
− dfa [ " delta_mass " ] . cumsum( ) ,

)
)
return route

Instalação do servidor Valhalla

Para execução do serviço Valhalla, foi utilizado um ambiente Docker. O Docker é
uma plataforma de código aberto que simplifica a implantação de aplicativos dentro de
contêineres. Uma vez instalado, o seguinte comando deve ser instalado, no caso de se ter
interesse no map-matching da região em questão.

docker run −dt −−name va lha l l a_g i s −ops−2 −p 8002:8002 −v $PWD/
custom_f i l e s : / cus tom_f i l e s −e t i l e _ u r l s=https : // download .
g eo f ab r i k . de/ south−america / b r a z i l / sudeste−l a t e s t . osm . pbf −e
bu i ld_e l eva t i on=True −e max_x=−44 −e min_x=−47 −e min_y=−25 −
e max_y=−21 −e ghcr . i o / g i s −ops/docker−v a l h a l l a / v a l h a l l a :
l a t e s t

Após a execução bem-sucedida, o servidor Valhalla GIS estará disponível em http://localhost:8002.

Código Python para chamada do servidor Valhalla

def make_valhala_request ( route ) :
begin_time = route [ " location_timestamp " ] . i l o c [ 0 ]
me i l i_coord ina t e s = (

route . a s s i gn (
time=lambda dfa : ( dfa [ " location_timestamp " ] −

begin_time ) . dt . seconds
)
. r e index ( columns=[ " time " , " l a t i t u d e " , " l ong i tude " ] )
. rename ( columns={" l a t i t u d e " : " l a t " , " l ong i tude " : " lon " })
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. to_json ( o r i e n t=" r e co rd s " )
)
#mei l i_accuracy = s t r ( route [ " accuracy " ] . t o l i s t ( ) )
meil i_head = ’ {" shape " : ’
# Those are parameters t ha t you can change accord ing to the

Mei l i ’ s documentation
m e i l i _ t a i l = (

" " " , " use_timestamps " : true , " search_radius " : 300 , "
c o s t i n g " : " bus " , " format " : " osrm " , " f i l t e r s " : { "
a t t r i b u t e s " : [ " shape " , " edge . names " , " edge . way_id " , "
edge . speed " , " edge . lane_count " , " edge . speed_l imi t " , "
edge . speed " , " edge . l e n g t h " , " edge . road_class " , " shape
" , " matched . po in t " , " matched . dis tance_along_edge " , "
matched . edge_index " , " edge . weighted_grade " , " edge . id " ,

" node . e lapsed_time " ] , " ac t i on " : " i n c l ude "}} " " "
) # f " , gps_accuracy :{ mei l i_accuracy }"+
# Combining a l l the s t r i n g in t o a s i n g l e r e que s t
meil i_request_body = meil i_head + me i l i_coord ina t e s +

m e i l i _ t a i l
u r l = " http :// l o c a l h o s t :8002/ t r a c e_a t t r i bu t e s "
# Provid ing headers to the r e que s t
headers = { " Content−type " : " a p p l i c a t i o n / j son " }
# We need to send our JSON as a s t r i n g
data = str ( meil i_request_body )
# Sending a r e que s t
r = r eque s t s . post ( ur l , data=data , headers=headers )
return r . j s on ( )

def _get_matched_edges ( re sponse ) :
matched_edges = pd . DataFrame ( re sponse [ " edges " ] ) . reset_index (

names=" edge_index " )
return matched_edges

def _get_matches_and_distances ( re sponse ) :
edge_match = [ ]
edge_distance = [ ]
for match in re sponse [ " matched_points " ] :

edge_match . append ( match . get ( " edge_index " ) )
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edge_distance . append ( match . get ( " distance_along_edge " ) )
return edge_match , edge_distance

def _mapmatching2points ( route , r e sponse ) :
i f len ( route ) > 50 :

a s s e r t len ( re sponse [ " edges " ] ) > 0 , "No edges matched f o r
long route "

matched_edges = _get_matched_edges ( re sponse )
edge_match , edge_distance = _get_matches_and_distances (

re sponse )
route = (

route . a s s i gn ( edge_index=edge_match , edge_distance=
edge_distance )

. merge (
matched_edges . a s s i gn (

edge_index=lambda dfa : dfa [ " edge_index " ] . astype (
f loat )

) ,
on=" edge_index " ,
how=" l e f t " ,
v a l i d a t e="m:1 " ,
s u f f i x e s =( " " , "_mapmatch" ) ,

)
)
return route

def get_route_info ( route ) :
r e sponse = make_valhala_request ( route )
route = route . p ipe ( _mapmatching2points , r e sponse=response )
return route

Código Python para estimar coeficientes de regeneração
def ca l cu late_energy_exponent ia l ( routes_geo , params ) :

alpha = params [ 0 ]
mass_column=" current_truck_mass "
speed_col=" speed "
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tour s = routes_geo . a s s i gn (
dspeed = lambda dfa : dfa [ speed_col ] . d i f f ( ) ,
a c c e l = lambda dfa : dfa [ " dspeed " ] / dfa [ " dtime " ] ,
ang le = lambda dfa : np . rad ians ( dfa [ " weighted_grade "

] . f i l l n a (0 ) ) ,
ptract ion_1 = lambda dfa : dfa [ mass_column ]∗ dfa [ "

a c c e l " ]∗ dfa [ speed_col ] /1000 ,
ptract ion_2 = lambda dfa : dfa [ mass_column ]∗ g∗np . s i n (

dfa [ " ang le " ] ) ∗ dfa [ speed_col ] /1000 ,
ptract ion_3 = lambda dfa : 0 .5∗C_d∗ area ∗ rho_air ∗( dfa [

speed_col ]∗∗3 ) /1000 ,
ptract ion_4 = lambda dfa : dfa [ mass_column ]∗ g∗np . cos (

dfa [ " ang le " ] . f i l l n a (0 ) ) ∗C_r∗ dfa [ speed_col ] /1000 ,
p t r a c t i on_to ta l = lambda dfa : ( dfa [ " ptract ion_1 " ] +

dfa [ " ptract ion_2 " ]+ dfa [ " ptract ion_3 " ]+ dfa [ "
ptract ion_4 " ] ) ,

r egen_coe f f = lambda dfa : np . where (
( dfa [ " p t r a c t i on_to ta l " ] < 0) & ( dfa [ " a c c e l " ] <

−0.001) ,
np . exp(−alpha / dfa [ " a c c e l " ] . abs ( ) ) ,
0

) ,
total_p = lambda dfa : np . where (

dfa [ " p t r a c t i on_to ta l " ] > 0 , ( dfa [ "
p t r a c t i on_to ta l " ] ) , dfa [ " p t r a c t i on_to ta l " ]∗
dfa [ " r egen_coe f f " ]

) ,
dtime_hour = lambda dfa : dfa [ " dtime " ]/3600 ,
energy = lambda dfa : dfa [ " total_p " ]∗ dfa [ " dtime_hour "

] ,
)

return tour s

def ca l cu la t e_energy_l inea r ( routes_geo , params ) :
alpha = params [ 0 ]
mass_column=" current_truck_mass "
speed_col=" speed "
tour s = routes_geo . a s s i gn (

dspeed = lambda dfa : dfa [ speed_col ] . d i f f ( ) ,
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a c c e l = lambda dfa : dfa [ " dspeed " ] / dfa [ " dtime " ] ,
ang le = lambda dfa : np . rad ians ( dfa [ " weighted_grade "

] . f i l l n a (0 ) ) ,
ptract ion_1 = lambda dfa : dfa [ mass_column ]∗ dfa [ "

a c c e l " ]∗ dfa [ speed_col ] /1000 ,
ptract ion_2 = lambda dfa : dfa [ mass_column ]∗ g∗np . s i n (

dfa [ " ang le " ] ) ∗ dfa [ speed_col ] /1000 ,
ptract ion_3 = lambda dfa : 0 .5∗C_d∗ area ∗ rho_air ∗( dfa [

speed_col ]∗∗3 ) /1000 ,
ptract ion_4 = lambda dfa : dfa [ mass_column ]∗ g∗np . cos (

dfa [ " ang le " ] . f i l l n a (0 ) ) ∗C_r∗ dfa [ speed_col ] /1000 ,
p t r a c t i on_to ta l = lambda dfa : ( dfa [ " ptract ion_1 " ] +

dfa [ " ptract ion_2 " ]+ dfa [ " ptract ion_3 " ]+ dfa [ "
ptract ion_4 " ] ) ,

r egen_coe f f = lambda dfa : np . where (
( dfa [ " p t r a c t i on_to ta l " ] < 0) & ( dfa [ " a c c e l " ] <

−0.001) ,
alpha ,
0

) ,
total_p = lambda dfa : np . where (

dfa [ " p t r a c t i on_to ta l " ] > 0 , dfa [ " p t r a c t i on_to ta l
" ] , d fa [ " p t r a c t i on_to ta l " ]∗ dfa [ " r egen_coe f f " ]

) ,
dtime_hour = lambda dfa : dfa [ " dtime " ]/3600 ,
energy = lambda dfa : dfa [ " total_p " ]∗ dfa [ " dtime_hour "

] ,
)

return tour s

def merge_with_validation ( tours , v a l i d a t i o n ) :
tours_agg = (

tour s . groupby ( [ " actual_id " ] , as_index=False )
. agg (

est imated_energy = ( " energy " , " sum" )
)
. merge (

va l i da t i on , on=" actual_id " , how=" l e f t " , v a l i d a t e="
1 :1 "
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)
. a s s i gn (

e r r o r = lambda dfa : ( dfa [ " true_energy " ] − dfa [ "
est imated_energy " ] ) . abs ( ) ,

error_squared = lambda dfa : dfa [ " e r r o r " ]∗∗2
)

)
return tours_agg

def goodness_of_f i t_exponent ia l ( params ) :
tour s = ca lcu late_energy_exponent ia l ( energy_train , params )
tours_agg = merge_with_validation ( tours ,

v a l i d a t i o n _ l i k e l i h o o d )
return tours_agg [ " error_squared " ] . mean ( )

def goodness_of_f i t_l inear ( params ) :
tour s = ca l cu la t e_energy_l inea r ( energy_train , params )
tours_agg = merge_with_validation ( tours ,

v a l i d a t i o n _ l i k e l i h o o d )
return tours_agg [ " error_squared " ] . mean ( )

def get_regen_coef f ( func , i n i t i a l _ v a l u e ) :
r e s u l t = minimize ( func , [ 0 . 0 4 1 1 ] ,

bounds =[ (0 .01 , 1) ] ,
method=’ Nelder−Mead ’ )

return r e s u l t . x
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Apêndice B - Dados

Considerando a elevada volumetria dos dados de GPS, serão disponibilizados ape-
nas os dados agregados por rota.

Dados de treino (com modelo físico microscópico) para ajuste da regressão linear.

Tabela 13: Dados de treino agregados - para regressão

90.990448 0.570000 45.150000 69.617165 68.175051

69.699487 0.600000 42.000000 52.942439 51.843252

87.467255 0.320000 71.400000 56.715366 54.724233

101.692542 0.470000 55.650000 70.691476 69.217707

112.350404 0.316000 71.820000 78.561635 76.725962

68.691018 0.630000 38.850000 49.312012 47.434389

114.581391 0.310000 72.450000 82.256530 81.208110

48.157651 0.720000 29.400000 34.250257 33.472363

63.399954 0.650000 36.750000 47.264331 46.346092

79.903585 0.600000 42.000000 53.359693 51.875788

68.619888 0.600000 42.000000 51.424809 50.497886

67.862717 0.700000 31.500000 52.375845 51.740205

35.356172 0.780000 23.100000 21.901897 20.927740

100.412243 0.400000 63.000000 67.209030 66.049413

22.331680 0.750000 26.250000 13.240187 12.933529

84.318098 0.500000 52.500000 57.945535 56.646722

66.408653 0.630000 38.850000 51.261654 50.266559

91.962793 0.500000 52.500000 66.896698 65.347038

Energia es-
timada pelo
modelo físico
sem regenera-
ção

Nível de bate-
ria (SOC)

Energia real
(calculada via
SOC) (kWh)

Energia esti-
mada pelo mo-
delo físico com
regeneração
exponencial
(kWh)

Energia es-
timada pelo
modelo físico
com regene-
ração linear
(kWh)

Continuado na próxima página
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Tabela 13: Dados de treino agregados - para regressão (Continuado)

61.375851 0.690000 32.550000 42.828607 42.185784

52.245147 0.720000 29.400000 35.906582 34.993003

105.972418 0.380000 65.100000 74.454042 72.905964

87.454302 0.600000 42.000000 68.398661 66.647056

92.154118 0.600000 42.000000 66.509849 64.368003

76.998761 0.600000 42.000000 54.071012 53.004583

97.560975 0.430000 59.850000 71.882499 70.429158

65.281302 0.600000 42.000000 48.441806 47.804028

74.903829 0.630000 38.850000 53.869433 53.136900

49.608749 0.670000 34.650000 34.623894 33.717910

62.331991 0.500000 52.500000 43.617518 42.694031

85.648366 0.500000 52.500000 59.553845 58.240725

84.029636 0.500000 52.500000 59.514740 58.337110

88.998874 0.500000 52.500000 64.023855 63.091733

84.747363 0.500000 52.500000 60.190688 58.910877

70.935281 0.570000 45.150000 51.658936 50.663580

78.837026 0.500000 52.500000 55.769074 54.369760

68.970990 0.570000 45.150000 46.230850 45.210111

94.027534 0.500000 52.500000 74.195559 73.140115

73.965469 0.530000 49.350000 55.461323 54.147302

94.997291 0.400000 63.000000 67.597807 66.184826

67.344466 0.530000 49.350000 43.803954 42.791552

77.402333 0.570000 45.150000 58.293345 57.224365

68.113148 0.530000 49.350000 44.206356 42.595089

97.660774 0.470000 55.650000 70.040664 68.625070

Energia es-
timada pelo
modelo físico
sem regenera-
ção

Nível de bate-
ria (SOC)

Energia real
(calculada via
SOC) (kWh)

Energia esti-
mada pelo mo-
delo físico com
regeneração
exponencial
(kWh)

Energia es-
timada pelo
modelo físico
com regene-
ração linear
(kWh)

Continuado na próxima página
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Tabela 13: Dados de treino agregados - para regressão (Continuado)

53.492070 0.630000 38.850000 39.983163 39.267503

116.447813 0.400000 63.000000 85.663284 84.092077

88.590557 0.570000 45.150000 66.370840 65.340408

74.768757 0.560000 46.200000 47.777390 46.240972

90.305701 0.500000 52.500000 67.998786 66.953273

77.082374 0.530000 49.350000 54.018175 52.830063

44.798016 0.750000 26.250000 33.782816 33.436204

92.689841 0.500000 52.500000 67.461478 65.995517

78.210316 0.600000 42.000000 55.543904 54.221127

68.911326 0.600000 42.000000 46.118055 45.264396

72.870175 0.630000 38.850000 57.154124 56.204279

81.541570 0.500000 52.500000 61.283221 60.620697

79.772936 0.570000 45.150000 63.159297 61.590767

95.985239 0.400000 63.000000 64.645253 62.813626

34.859723 0.750000 26.250000 24.595124 24.203567

97.682462 0.350000 68.250000 66.904963 65.289588

79.846616 0.560000 46.200000 56.674796 55.038060

97.613596 0.500000 52.500000 70.800239 69.718468

86.318911 0.350000 68.250000 60.186404 58.533846

Energia es-
timada pelo
modelo físico
sem regenera-
ção

Nível de bate-
ria (SOC)

Energia real
(calculada via
SOC) (kWh)

Energia esti-
mada pelo mo-
delo físico com
regeneração
exponencial
(kWh)

Energia es-
timada pelo
modelo físico
com regene-
ração linear
(kWh)

E, por fim, dados de teste para validação dos modelos:
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Tabela 14: Dados de teste - para cálculo de erros

0.590000 43.050000 37.834208 44.121310 44.317317

0.400000 63.000000 44.751133 51.082866 51.238533

0.570000 45.150000 40.435382 47.551830 47.412222

0.180000 86.100000 52.107866 58.063440 58.519032

0.570000 45.150000 44.985096 52.380181 52.518125

0.380000 65.100000 47.028900 52.055536 52.325651

0.400000 63.000000 62.630398 73.079586 73.103801

0.380000 65.100000 42.967770 49.958850 50.191960

0.560000 46.200000 48.266232 56.272801 56.607048

0.430000 59.850000 47.688743 55.350872 55.250046

0.610000 40.950000 30.310870 37.371861 37.251651

0.440000 58.800000 45.714854 54.980954 54.580863

0.500000 52.500000 48.879226 58.757631 58.512298

0.500000 52.500000 44.533931 50.579530 50.904110

0.630000 38.850000 37.862323 45.448929 45.432412

0.500000 52.500000 41.675161 47.835292 47.937041

Nível de bate-
ria (SOC)

Energia real
(calculada via
SOC) (kWh)

Energia es-
timada pelo
modelo físico-
estatístico sem
regeneração
(kWh)

Energia es-
timada pelo
modelo físico-
estatístico com
regeneração
linear (kWh)

Energia es-
timada pelo
modelo físico-
estatístico com
regeneração
exponencial
(kWh)
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