Luisa Mendes Heise

Predicao de consumo de energia em veiculos
elétricos em entregas de uma induastria de
alimentos e bebidas com o uso de modelos

hibridos fisico-estatisticos

S3o Paulo

2023






Luisa Mendes Heise

Predicao de consumo de energia em veiculos elétricos em
entregas de uma induastria de alimentos e bebidas com o

uso de modelos hibridos fisico-estatisticos

Trabalho de formatura apresentado a Escola
Politécnica da Universidade de Sao Paulo
para a obtencao do diploma de Engenheiro
de Producao

Orientador: Prof. Dr. Hugo Tsugunobu
Yoshida Yoshizaki

Universidade de Sao Paulo — USP
Escola Politécnica

Departamento de Engenharia de Producao (PRO)

Sao Paulo

2023



Autorizo a reproducéo e divulgacao total ou parcial deste trabalho, por qualquer meio
convencional ou eletrdnico, para fins de estudo e pesquisa, desde que citada a fonte.

Catalogacao-na-publicacéo

Heise, Luisa

Predi¢do de consumo de energia em veiculos elétricos em entregas de
uma industria de alimentos e bebidas com o uso de modelos hibridos fisico
estatisticos / L. Heise -- Sdo Paulo, 2023.

100 p.

Trabalho de Formatura - Escola Politécnica da Universidade de Sao
Paulo. Departamento de Engenharia de Produgéo.

1.veiculos elétricos 2.logistica 3.sustentabilidade 4.modelo de energia
l.Universidade de Sao Paulo. Escola Politécnica. Departamento de
Engenharia de Producéo II.t.




Agradecimentos

Ao Prof. Hugo, que gentilmente concordou em orientar-me e ofereceu todo o su-

porte necessario para a realizacao deste trabalho.

Ao Prof. Flavio Vaz de Almeida, com quem tive conversas que se mostraram ver-

dadeiros pontos de inflexao essenciais para a conclusao deste trabalho.

Ao meu amigo André Ferreira, cuja ajuda em iniimeros debugs de cddigo, revisodes

de textos, brainstorming e, principalmente, palavras de incentivo, foram essenciais.

Ao Alexandre Duarte, por acompanhar-me nas visitas e inspegoes de dados, con-

tribuindo em diversas revisoes e analises deste trabalho.

Ao Pedro Henrique Callil-Soares pela boa vontade em pensar em solugoes técnicas

e ajuda com a execucao técnica deste trabalho.

Ao supervisor Fabio por sua paciéncia e prestatividade durante as diversas visitas

ao centro de distribuicgao.

A Jonatas, Daniel, Caio e Bianca, cuja colaboracao foi fundamental para obtencao

dos dados para realizacao deste trabalho.

A minha familia pelo incentivo e inspiracao para seguir firme durante toda minha

formacao.
Ao Joao Vitor por todo o companheirismo e apoio.

Aos meus amigos Giulia, Fernanda e Marcello, por trazerem alegria e palavras de

incentivo neste periodo.

Aos meus amigos e colegas da POLI e do Turing USP, que tornaram os seis anos

de escola uma experiéncia mais leve.

Cada um de vocés desempenhou um papel fundamental na conclusao deste traba-

lho, e agradeco profundamente por isso.



Resumo

A necessidade de reduzir as emissoes de gases de efeito estufa (GEEs) tem impulsionado
a adogao de veiculos elétricos a bateria (BEVs) em frotas de caminhoes de entrega. No
entanto, essa mudanca traz desafios e oportunidades especificos. Por um lado, veiculos
elétricos sao mais eficientes e, muitas vezes, possuem um custo variavel menor do que
veiculos a combustao. Por outro, a autonomia dos BEVs, ou seja, a distancia que pode
ser percorrida sem recarga da bateria, ¢ limitada. Tal aspecto ¢é especialmente relevante
devido a baixa densidade energética das baterias e a infraestrutura limitada de pontos de

recarga em transito.

Diversos fatores afetam a autonomia dos veiculos elétricos, como o tipo de carga, o relevo,
o trafego, o tipo de estrada, as condigoes climaticas e o estilo de direcao. Alguns desses
fatores tém uma relacao direta com caracteristicas geograficamente delimitadas, como

congestionamentos, relevo e tipo de via.

Foram desenvolvidos modelos de energia hibridos, compostos por modelagem fisica e es-
tatistica (fisico-estatisticos), abrangendo uma variedade de escalas, que vao desde o mi-
croscopico até o macroscopico, e incorporando diferentes modelagens de regeneracao de
energia: nenhuma regeneracao, regeneragao linear e nao-linear. Esses modelos foram apli-
cados a conjuntos de dados de GPS que apresentavam alta laténcia. Foram obtidas taxas
de erro variaveis, sendo o modelo microscopico com modelagem exponencial da energia
regenerada o que levou ao menor erro percentual médio, no valor de 2,35% nos dados de

teste.

Conclui-se que modelos com granularidade mais refinada na estimagao de energia tem o
o erro associado menor. Nesse sentido, em aplicagoes em que ¢é possivel prever de ante-
mao os parametros necessarios para modelos mais precisos, o seu uso pode melhorar a

confiabilidade os processos associados, como roteirizagao e dimensionamento de frotas.

Palavras-Chave — veiculos elétricos, modelo de energia, regeneracao, sustentabilidade,

logistica, frotas eletrificadas



Abstract

The need to reduce greenhouse gas emissions has driven the adoption of battery electric
vehicles (BEVs) in delivery truck fleets. However, this shift presents specific challenges
and opportunities. On one hand, electric vehicles are more efficient and often have lower
variable costs than combustion vehicles. On the other, the range of BEVs, i.e., the distance
they can travel without recharging their battery, is limited. This aspect is particularly rel-
evant due to the low energy density of batteries and the limited infrastructure of charging

points on the road.

Various factors affect the range of electric vehicles, such as the type of load, terrain, traffic,
road type, weather conditions, and driving style. Some of these factors have a direct

relationship with geographically delimited features, such as congestion, terrain, and road

type.

Hybrid energy models have been developed, combining physical and statistical modeling
(physico-statistical), covering a range of scales from microscopic to macroscopic, and incor-
porating different energy regeneration models: no regeneration, linear regeneration, and
non-linear regeneration. These models were applied to GPS datasets with high latency.
Variable error rates were obtained, with the microscopic model using exponential regen-
eration energy modeling producing the lowest average percentage error at 2.35% in the
test data.

Models with finer granularity in energy estimation have lower associated errors. Because
of that, in applications where it is possible to predict the parameters needed for more
accurate models in advance, their use can improve the reliability of associated processes,

such as routing and fleet sizing.

Keywords — electric vehicles, energy model, regeneration, sustainability, logistics, elec-
trified fleets
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1 Introducao

O presente trabalho de formatura foi conduzido como um estudo de caso feito
com uma empresa do ramo de alimentos e bebidas. Em especifico, este trabalho foi de-
senvolvido no contexto de um centro de distribuigdo (CD) que atende uma grande cidade
brasileira. Neste capitulo sao apresentados motivagoes e objetivos do estudo, além da
contextualizacao do problema e da operacao da empresa em questao. Durante o texto,
quando o termo "veiculo elétrico"for utilizado, ele se refere a "veiculo elétrico a bateria',
ou seja, BEVs.

1.1 Motivacao

1.1.1 Aspecto ambiental

O Brasil foi responsavel por 1,32% das emissoes globais de COy no ano de 2021
(Our World in Data, 2021). Veiculos pesados, como caminhdes, sdo responsaveis por uma
parcela consideravel da emissao de gases de efeito estufa: no ano de 2020, os caminhoes

foram responséveis pela emissao de 16 milhoes de toneladas de CO, ., apenas no estado
de Sao Paulo (Companhia Ambiental do Estado de Sao Paulo (CETESB), 2022).

No Brasil, veiculos com motor a combustao interna flexz-fuel dominam o mercado
de veiculos a passeio. Esses veiculos sdo capazes de funcionar tanto com etanol hidratado
quanto com gasolina C. No total, o etanol representa cerca da metade do consumo de
combustivel (em volume) da frota de automéveis de passageiros, seja como etanol hidra-
tado ou na mistura de gasolina C. Simplesmente operar os veiculos flex-fuel apenas com
etanol seria capaz de reduzir as emissdes de GEEs da frota de passeio em 31% (Mera et
al., 2023).

Ao contrario do cenario de veiculos de passeio, no caso dos caminhoes, a maioria
da frota ainda opera com veiculos a Diesel. Segundo o Anuario da Indtstria Automo-
bilistica Brasileira (2023), 99,127% dos caminhoes licenciados em 2022 eram a Diesel,
ao passo que apenas 0,564% eram elétricos e 0,281% a gds. Segundo EPA (United Sta-
tes Environmental Protection Agency) (2023), emissoes de motores a Diesel contribuem
para a formacao de ozonio em niveis terrestres, prejudicando a vegetacao e desencadeando
a producao de chuva acida, com impactos diretos no solo e corpos d’agua. Além disso,

prejudicam a saide humana e tém elevada taxa de emissao de gases de efeito estufa.

Globalmente, diversas iniciativas pretendem buscar alternativas aos veiculos movi-
dos a combustiveis fosseis, dada a necessidade urgente de mitigar as mudancas climaticas.

A eletrificacao das frotas tem o mérito de melhorar a eficiéncia energética, uma vez que os
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motores elétricos sdo mais eficientes do que os motores de combustao interna (ICV) (Basso
et al., 2019), mas essa eficiéncia nao se traduz necessariamente em emissoes menores de
gases de efeito estufa (GEEs), uma vez que tal resultado é dependente da composigao da

matriz energética empregada para recarregar as baterias.

Em paises cuja matriz elétrica tem alta intensidade de emissao de CO5, como China
e India, os veiculos elétricos a bateria (BEVs) podem, na verdade, emitir quantidades
maiores de CO, por quildometro rodado do que veiculos a combustao semelhantes em
outros locais, segundo Doucette; McCulloch (2011). Em um sentido similar, Kawamoto
et al. (2019) calcularam a distdncia necesséria a ser percorrida por um veiculo elétrico a
bateria (BEV) de modo que suas emissoes se igualassem com um veiculo a combustao
interna (IC'V) ao longo de seu ciclo de vida, o chamado DIP (Distance of Intersection
Point). Nesse estudo foi verificado que quanto mais limpa a matriz energética de um pais,
menor seria o DIP e, para a Australia, em particular, as emissoes de BE'V's sempre eram

mais elevadas do que de IC'Vs.

Os veiculos elétricos ndo sao a unica alternativa para a reduc¢ao na emissao de
GEEs. H4 também a possibilidade do uso de veiculos a combustao movidos por biocom-
bustiveis, como o etanol. O Brasil se encontra num cenario propicio para ambas solugoes,
dada a baixa taxa de emissao de sua matriz energética e seu protagonismo relacionado ao
combustivel etanol, que data da década de 1970, com a politica do Pré-Alcool. Segundo
Moreira; Pacca; Goldemberg (2022), do ponto de vista ambiental, a co-producao de ele-
tricidade e biocombustivel a partir de cana-de-acucar, utilizada para alimentar veiculos
hibridos, seria uma boa pratica para melhorar a eficiéncia energética em veiculos leves,

podendo reduzir demanda de energia destes em mais de duas vezes.

Segundo Sathre; Gustavsson (2023), caminhdes elétricos com bateria apresentam
um menor uso de energia primaria e emissoes de CO5 ao longo de seu ciclo de vida em
comparacao com caminhoes de combustao interna. O mesmo estudo aponta que o uso
mais eficiente de energia e o menor impacto climatico sao observados quando os cami-
nhoes elétricos sao alimentados por energia edlica e bioeletricidade co-gerada. Os veiculos
elétricos a bateria (BEVs) ainda tém a vantagem de nao emitir gases durante sua operagao,
abrangendo nao apenas o CO,, mas também outros gases poluentes e material particulado
(MP), que podem representar riscos para a saude, especialmente em ambientes urbanos.
Segundo Gouveia et al. (2006), existe uma correlagao estatisticamente significativa entre o
aumento dos niveis de poluentes na atmosfera e um aumento nas taxas de hospitalizacoes

por diversas causas.

Conforme Carvalho (2011), a maior parte das emissdes de carbono provenientes de
veiculos no Brasil se concentra em regioes urbanas, onde mais de 80% da populacao reside.
De fato, no contexto urbano, os veiculos elétricos demonstram ser uma escolha favoravel.

Conforme observado por Barnitt (2011), caminhoes de entrega urbana geralmente operam
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a baixas velocidades médias, e os motores elétricos apresentam uma maior eficiéncia nesse
cenario. Além disso, as frequentes desaceleracoes e paradas no transito urbano sao ideais
para tirar proveito do sistema de frenagem regenerativa, como mencionado por Hellgren
(2007).

De acordo com Lee; Thomas; Brown (2013), fazendo uma avaliagao do ciclo de vida
de caminhoes elétricos e a diesel, considerando um cenario de um ciclo de condugao com
paradas frequentes e baixa velocidade média, como o de uma grande cidade, caminhdes
elétricos emitem de 42% a 61% menos gases de efeito estufa (GEEs) e consomem de 32%
a 54% menos energia do que caminhdes a diesel, dependendo dos cenarios de eficiéncia do

veiculo.

No Brasil, ja existem politicas de incentivo ao uso de veiculos elétricos. Segundo
a CETESB (2023), o Proconve (Programa de Controle da Poluigdo do Ar por Veiculos
Automotores) é um programa do governo estadual de Sdo Paulo que tem como um dos
seus objetivos a redugao de emissao de poluentes. Ele tem entrado em vigéncia em dife-
rentes fases, que tornam os limites de gases emitidos cada vez menores, aumentando a
atratividade econdmica dos BEVs. Além disso, o rodizio de veiculos em Sao Paulo nao se
aplica a carros elétricos e hibridos, ja que a lei n°15.997, de 27 de Maio de 2014, estabelece
que os veiculos elétricos, movidos a hidrogénio e os hibridos estao isentos do cumprimento

da restricao determinada pelo Rodizio Municipal de Veiculos.

1.1.2 Desafios e oportunidades em frotas eletrificadas

Em primeiro lugar, é importante destacar que, embora o custo global das bate-
rias tenha diminuido nos tltimos anos de $1100/kWh em 2010 para $137/kWh em 2020
(Bhardwaj; Mostofi, 2022), elas ainda representam um dos componentes mais caros dos
veiculos elétricos (BEVs) (Bhardwaj; Mostofi, 2022; Basso et al., 2019). Outro ponto a ser
considerado ¢ a limitacao da densidade energética das baterias. Em comparacao com vei-
culos de combustao interna, BEVs sdo mais eficientes, tendo eficiéncia perto de 90% (Fiori;
Ahn; Rakha, 2016) e veiculos a combustao algo perto de 40% (Paschoal et al., 2017). Ape-
sar disso, os BEVs ainda armazenam quantidades relativamente baixas de energia em suas
baterias. Por exemplo, o diesel possui uma densidade energética de 45 MJ/kg (Hore-Lacy,
2011), enquanto as baterias dos BEVs geralmente armazenam entre 100 e 265 Wh/kg
(Deng et al., 2020), o que equivale a 0,36-0,95 MJ/kg. Isto é, a densidade energética do
diesel é maior do que uma bateria elétrica. Aumentar essa densidade energética acarreta

riscos de seguranga, como o potencial de incéndios (Deng et al., 2020).

Apesar disso, o custo variavel de veiculos elétricos se mostra como um grande
diferencial em relagao ao de veiculos a combustao. Bhardwaj; Mostofi (2022) calcularam
o Custo Total de Propriedade (em inglés TCO - Total Cost of Ownership), verificando o

baixo custo variavel dos BEVs na Uniao Europeia.
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No Brasil, também, verificamos que o custo da energia elétrica se mostra vantajoso.
Segundo a ANP - Agéncia Nacional de Petréleo, Gas Natural e Biocombustiveis (2023),
desde janeiro de 2022, o prego médio de revenda do diesel S10 em Sao Paulo foi de 6,272

RT$, como pode ser visto na Figura 1. O preco da energia no ambiente de contratagao
livre (ACL) tem uma oscilagdo alta, mas se manteve abaixo de 0,2 % no ultimos meses,

como pode ser visto na oscilagdo do PLD (Prego de Liquidagao das Diferencas) na Figura

2. Considerando a autonomia nominal de 110km para uma bateria de 105 kWh (UOL -

R$ R$
kWh> km rodado "

um veiculo a combustao, considerando o consumo 32L para cada 100km rodados para um

Universo Online, 2022), com um custo de 0,2 temos o valor de 0,19 Para

veiculo de 15T (Demir; Bektag; Laporte, 2011), e com o valor de 6,2 #ﬁelSlO’ temos

o custo de 1,984 kR7$. Ou seja, uma diferenca de aproximadamente dez vezes.
m rodado ’

PRODUTO —— gLEC DIESEL 5500 —— OLEOQ DIESEL 510

[Médiz 510: 5.272 R/L

A

PREGO MEDIO REVENDA,
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Figura 1 — Série histérica do preco médio de revenda do diesel S10 e diesel S500 na cidade
de Sao Paulo.
Fonte: ANP - Agéncia Nacional de Petroleo, Gas Natural e Biocombustiveis
(2023)
Elaboracao: autor

No entanto, apesar de o custo variavel de veiculos elétricos ser consideravelmente
mais baixo do que veiculos a combustao, seu custo fixo é mais elevado. Os cinco caminhoes
de porte leve mais vendidos no Brasil em 2023 tém valores de modelos 2023 entre 284
mil reais e 335 mil reais, segundo a FIPE - Fundacao Instituto de Pesquisas Econdémicas
(2023), como pode ser visto na tabela 1. Os veiculos elétricos, por outros lado, tém valores
mais elevados. Por exemplo, o BEV Volkswagen E-Delivery 11 2023 (3 packs), que tem
um Peso Bruto Total (PBT) de 11400 kg e capacidade max. de carga util de 7020kg, tem
um valor superior a 900 mil reais, ao passo que, que o ICV VW Truck Delivery/9180 tem
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Figura 2 — Série historica do PLD (Prego de Liquidac¢ao das Diferengas) semanal médio
para o Sudeste
Fonte: Energia Elétrica (2023)
Elaboracao: autor

um PBT de 9200 kg e capacidade max. de carga tutil de 6225kg, custando préximo a 335

mil reais.
Numero de emplacamentos Preco
Caminhao
(jan-set 2023) (1) (Modelo 2023)(2)
M. Benz / Accelo 1016 1531 R$ 329.830,00
VW Truck Delivery /9170 1213 R$ 298.049,00
M. Benz / Accelo 815 829 R$ 299.746,00
VW Truck Delivery /9180 618 R$ 335.762,00
IVECO / Tector 9-190 433 R$ 284.929,00
(1): FENABRAVE (2023)
(2): FIPE - Fundacao Instituto de Pesquisas Econémicas (2023)

Tabela 1 — Prego dos caminhoes leves a combustao (ICVs) mais vendidos até setembro
de 2023
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Capacidade
Caminhao Peso bruto total (PBT) Prego (1)

da bateria

EV1200T 97 KWh (2) 7500 ke (2) R$ 393.592,00
e-Delivery 14 (3 packs) | 105 kWh (3) 14500 kg (3) R$ 1.031.786,00
e-Delivery 11 (3 packs) | 105 kWh (3) 11400 kg (3) R$ 909.328,00

(1): FIPE - Fundagao Instituto de Pesquisas Economicas (2023)
(2): Jac Motors (2023)

(3): Volkswagen (2023)

Tabela 2 — Prego e autonomia média dos caminhdes elétricos (BEVs) ja utilizados em
operacao pela empresa do estudo

Nao apenas o custo fixo de veiculos elétricos é maior do que o de veiculos a com-
bustao, existem incertezas maiores embutidas em sua operacao. O processo de recarga das
baterias geralmente requer muito tempo e a infraestrutura disponivel para esse fim ainda
é escassa (Basso et al., 2019). Por isso, o tempo entre os usos precisa ser bem calculado,

assim como a autonomia esperada para uma dada rota.

Esses fatores resultam em veiculos elétricos com um custo de aquisi¢cao elevado e
autonomia limitada. Dessa forma, a baixa autonomia pode levar a dois cendrios indese-
jados. O primeiro é a subutilizagdo do caminhao, de modo a evitar o risco de ficar sem
carga ao longo da rota. O segundo cenéario é a parada do caminhao devido ao esgotamento
da bateria, o que acarreta em custos de reboque e na interrupcao da rota planejada. As-
sim, embora o custo variavel relacionado a energia em veiculos elétricos a bateria (BEVs)
seja consideravelmente menor do que nos veiculos de combustao interna (ICVs), os BEVs

enfrentam desafios devido a seus maiores custos fixos e menor resiliéncia operacional.

1.1.3 Importancia de modelos de energia para veiculos elétricos

Considerando a baixa autonomia de veiculos elétricos e o seu elevado tempo rela-
tivo para recarga, faz-se importante haver modelos confidveis para a estimacao de energia

consumida em uma dada rota, ou, de forma mais abrangente, em uma dada operacao.

Do ponto de vista de planejamento e scheduling do carregamento de veiculos elé-
tricos, compreender como e quando a energia ¢ consumida durante as operagoes diarias

ajuda na implementagao de estratégias de carregamento, garantindo que os veiculos este-
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jam prontos para atender as demandas de entrega ao longo do dia. Rogge et al. (2018)
desenvolveram uma metodologia para estimagao do TCO (total cost of ownership) de uma
frota de 6nibus elétricos, em que sao considerados o scheduling de carregamento, assim
como os custos de investimento e operacionais do sistema de 6nibus. Um dos insumos

cruciais para esse modelo é a estimacao de nivel de bateria utilizado entre trechos.

Modelos confiaveis de estimagao de energia de veiculos elétricos também sdo cru-
ciais para realizar um planejamento de roteirizacao desses veiculos. Em geral, algoritmos
de roteamento assumem o consumo energético como uma fung¢ao linear da distancia, ou
seja, uma autonomia constante. No entanto, o consumo de energia é influenciado nao so6
pela distancia percorrida, mas também por outros fatores, como a carga transportada, o
perfil de velocidades e aceleragoes, a topografia e o uso de equipamentos auxiliares, como
o ar-condicionado (Basso et al., 2019). Ao incorporar essas informagdes no planejamento
da roteirizagao, é possivel estimar com mais precisao o consumo de energia necessario
para cada rota. Isso poderia permitir uma programagao mais eficiente, garantindo que
os veiculos tenham autonomia suficiente para completar as rotas designadas, evitando

paradas indesejadas devido ao esgotamento da bateria.

Além dos fatores relacionados a rota, é importante considerar que diferentes veicu-
los possuem eficiéncias variadas, dependendo do contexto em que sao utilizados. Existem
veiculos mais adequados para diferentes situa¢oes. Por exemplo, um caminhdo com baixo
torque tem um desempenho melhor em trajetos de alta velocidade e de baixa inclina-
¢ao, enquanto caminhoes com alto torque apresentam um melhor desempenho em rotas
com aclives e declives acentuados, segundo Velazquez-Martinez et al. (2016). No caso de
veiculos elétricos, Ahmed et al. (2022) encontraram uma correlacdo entre especificagoes
técnicas e autonomia nominal. A escolha por parametros de torque pode comprometer va-
riaveis preditoras de maior autonomia em condigoes padrao do fabricante. Nesse sentido,
no caso de uma frota com mais de um modelo de caminhao elétrico, os modelos de energia
poderiam ser tuteis para a alocagdo de rotas para caminhoes de modo a minimizar o gasto
energético, ja que os modelos incorporam tais diferencas de desempenho dos caminhoes
em diferentes cendrios. Em veiculos a combustao, é sabido que tal selecdo de rotas é algo
que impacta no consumo de energia, portanto, na emissao de gases, sendo que a selegao
6tima de caminhos pode levar a uma diminuicao de 4% nas emissoes em comparagao com

métodos tradicionais de otimizagao de distancia (Behnke; Kirschstein, 2017).

Além disso, na escolha de trajetos, os modelos de energia também poderiam ser
utilizados para selecionar rotas de menor consumo entre dois pontos, visto que mesmo
pequenas variabilidades na rota escolhida podem gerar um impacto perceptivel na auto-

nomia do veiculo.

Dessa forma, modelos de energia sao importantes para otimizacao de aspectos

operacionais de veiculos elétricos, como scheduling de carregamento e roteirizagao. Tais
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aspectos, por sua vez, tém efeito direto no TCO e na taxa de emissao dos veiculos a longo
do seu ciclo de vida, o que impacta diretamente na sua viabilidade econémica e no seu

impacto ambiental.

A eficacia desses modelos é ressaltada quando sao capazes de extrapolarem além
das condigoes previamente observadas, permitindo a proje¢ao e andlise em contextos que
ainda nao foram diretamente vivenciados. Para tal, ndo apenas é necessario o desenvolvi-
mento e validagao de parametros de um modelo em especifico, mas, também, a simulacao
de condicoes aderentes aos dados utilizados para o ajuste paramétrico do modelo. Isto é,
no caso de um modelo que utiliza dados de operagdo com periodo entre amostragens de

10 segundos, o perfil simulado deve ser coerente com tal amostragem.

Em resumo, os modelos de energia, embora fundamentados em aspectos primor-
dialmente mecanicos e fisicos dos veiculos, acarretam implicagoes estratégicas e operaci-
onais significativas. Nesse contexto, torna-se crucial uma analise centrada nas lacunas e
potencialidades desses modelos, adotando uma perspectiva de planejamento e operacao

caracteristica da engenharia de producao.

1.2 Diagnéstico da operacao

O presente trabalho de formatura foi conduzido como um estudo de caso feito com
uma empresa do ramo de alimentos e bebidas. No centro de distribuicao estudado durante
esse trabalho, opera-se com 42 modelos de veiculos elétricos do modelo Volkswagen e-
Delivery 14 (Figura 3), com capacidade para 6 pallets. O total da frota do CD é de 159
veiculos, ou seja, 26,4% da frota é eletrificada. Além disso, toda a energia que abastece o
CD é de geracao renovavel e limpa. As entregas sao feitas no contexto B2B. Anteriormente,
o CD operou também com modelos iEV1200T da Jac Motors, no entanto, no periodo
estudado, apenas os modelos da Volkswagen estavam em operagao. A versao utilizada
do e-Delivery 14 contém 3 packs de bateria, totalizando 105 kWh, como uma autonomia

nominal de 110km.

Ao longo de 2023, foram realizadas oito visitas ao centro de distribui¢do, acom-
panhadas por analises de rotas e entrevistas com supervisores de operacao e roteirizacao.
Inspec¢odes minuciosas foram conduzidas manualmente em fichas contendo informacoes de
mais de 350 rotas para avaliar os niveis de bateria na chegada dos caminhoes ao centro
de distribui¢do. Uma anélise individual de mais de 200 rotas foi realizada para identificar
padroes operacionais, contribuindo assim para a curadoria de dados necessaria para este
trabalho.

O processo de entregas tem inicio com a roteirizagdo, que utiliza um pardmetro
de autonomia fixo para os veiculos elétricos. A definicdo desse parametro é resultado de

reunioes entre a equipe de lideranga do centro de distribuicao e a central de roteirizacao
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Figura 3 — E-Delivery 14.
Fonte: Volkswagen

da empresa. Ha esforgos para estabelecer rotas fixas e manter motoristas consistentes para

cada caminhao. No entanto, esse processo ainda nao esta completamente aderente.

Antes de sairem para as entregas, durante a noite, os caminhdes elétricos sao
carregados em carregadores como os da Figura 4 por cerca de 8 horas. Um procedimento
de verificacao ¢ executado no momento de saida, chamado de checklist, o qual abrange
a inspecao de danos no veiculo, a confirmacao da existéncia de acessérios como extintor,
cones e cofre, a disponibilidade de carrinhos auxiliares para o transporte das caixas, a
verificacao da quilometragem registrada no veiculo e, no caso dos caminhoes elétricos, a
garantia de que o veiculo s6 deixa o centro de distribuicao com o painel indicando uma
carga de bateria de 100%.

Durante o processo de entregas, o motorista recebe instrugoes para utilizar um
aplicativo exclusivo da empresa. Dentro desse aplicativo, ha certa flexibilidade para esco-
lher a primeira entrega da rota. No entanto, uma vez que a primeira entrega é feita, o
motorista deve seguir rigorosamente as orientagoes fornecidas pelo aplicativo para as en-
tregas subsequentes. E uma exigéncia constante que o motorista esteja atento ao nivel da
bateria exibido no painel do caminhao. Quando a bateria atinge aproximadamente 50%, o
motorista é instruido a informar imediatamente seu supervisor no centro de distribuicao

a respeito dessa situacao.

A partir desse ponto, uma avaliacdo detalhada da viabilidade de continuar a rota é
conduzida, ponto por ponto. Essa avaliacao leva em consideragao a indicacao de autonomia
exibida no painel do veiculo, a distancia estimada até a préxima entrega, fornecida pelo
aplicativo da empresa, e a distancia da préxima entrega até o centro de distribuicao,
obtida do aplicativo "Google Maps". Se a autonomia indicada no painel for suficiente para

cobrir a soma das distancias até a préxima entrega e de 1a4 até o centro de distribuicao,
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Figura 4 — Carregador do veiculo elétrico
Fonte: autor

o motorista prossegue com essa entrega. Esse processo é repetido em todas as entregas
restantes. No entanto, se a autonomia prevista no painel for inferior a distancia estimada,

o veiculo ¢ direcionado a retornar ao centro de distribuicao imediatamente.

Ap6s o retorno ao centro de distribuicdo, é conduzida uma segunda verificagao
(checklist), que abrange a inspecao de possiveis danos recentes no veiculo, a confirmacao
da presenca de todos os acessorios e a anotacao da quilometragem atual. Nao é registrado
ou armazenado de nenhuma maneira o nivel da bateria durante esse processo de retorno.
No entanto, sao tiradas fotografias do painel do veiculo para documentar a quilometragem
percorrida. Nessas imagens, ¢ comum que o indicador do nivel de bateria seja visivel como
parte do registro. O desenho esquematico desse fluxograma de operagao pode ser visto na

Figura 6.

Para o desenvolvimento do trabalho, foram coletados dados de 329 checklists de
retorno. Apenas um subconjunto destes pode ser utilizado para os modelos de energia, pela
questao da viabilidade do uso dos dados da rota que sera discutido em sec¢oes subsequentes
do trabalho. Das 329 rotas, 149 tinham fotos em que nao era possivel verificar o nivel de
bateria na foto do checklist. O histograma dos niveis de bateria das 180 rotas restantes

pode ser visto na Figura 5.

E verificdvel que, na amostra, a média de nivel de bateria no retorno ao CD foi de
51,3% e o desvio padrao foi de 11,86%, evidenciando uma alta variabilidade no consumo

de bateria entre as rotas. De fato, a cidade de operacao possui uma grande diversidade de
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regides, algumas delas possuem maior concentracao de seméforos, ou ruas mais estreitas,
enquanto outras possuem ruas mais livres e menor adensamento de comércio e residéncias,
além disso ha uma grande diversidade de relevo. Tais fatos podem fazer com que o consumo

em kWh/km tenha uma variabilidade alta.
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Figura 5 — Histograma de nivel de bateria no retorno ao CD
Fonte: autor
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Figura 6 — Fluxograma do processo de entregas e procedimento de emergéncia
Fonte: autor
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1.3 Objetivo do trabalho

O objetivo deste trabalho reside no desenvolvimento e avaliagdo de modelos hibri-
dos (combinando modelagem fisica e estatistica) de consumo de energia em trés escalas
distintas: macroscopica, mesoscopica e microscépica, utilizando dados provenientes de re-
gistros de operacao ja existentes nos sistemas da empresa em questao. Os dados utilizados
sao de rastreamento por GPS e informagoes sobre entregas em uma frota pertencente a

uma industria de bebidas e alimentos. De forma enumerada, os objetivos do trabalho sao:

1. Aplicacao de modelos de energia microscopicos com diferentes modelagens do meca-
nismo de regeneragao e sua correcao com um coeficiente linear obtido com validagao

estatistica

2. Derivagao de pardmetros macroscopicos de autonomia (kWh/km) referentes a cada

uma das modelagens do mecanismo de regeneracao

3. Derivacao de parametros mesoscopicos de consumo energético por distancia e massa
(kWh/km /kg)

4. Anélises de erros, limitagoes e aplicagdes dos modelos

Os produtos deste TF serao os modelos ajustados e as analises de suas limitagoes

e cenarios de aplicacao.

1.4 Estrutura do trabalho

A estrutura deste trabalho inicia-se com a introdugao, abordando as motivagoes
para a investigagao sobre veiculos elétricos, a importancia dos modelos de estimacgao de

energia para esses veiculos e um diagnostico operacional da empresa em questao.

Em seguida, realiza-se uma revisdo de literatura, destacando as principais refe-
réncias sobre estimacao de energia, gases de efeito estufa, estado de carga de baterias,

preparacao de dados de rastreamento por GPS e aplica¢oes de modelos de energia.

O capitulo subsequente aborda os materiais e métodos, descrevendo os dados, a
metodologia de obtenc¢ao e os procedimentos de limpeza e processamento. Além disso, sao
apresentados os modelos adotados, sua formulacao matematica e os procedimentos para

inferéncia de parametros.

Na secao de resultados e discussao, sao analisados os erros e suas possiveis fontes,
juntamente com analises de dimensionamento e clusterizacao de rotas baseadas nos mode-
los de energia. Ao final do capitulo, s@o resumidos os insights e casos de uso recomendados

para cada tipo de modelo.
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A conclusao sintetiza os principais aprendizados, seguida por sugestoes para futu-

ros desenvolvimentos.

Os apéndices fornecem acesso a parte dos dados e ao cddigo fonte utilizado neste
trabalho.
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2 Revisao da Literatura

Neste capitulo é apresentada uma revisao de literatura focada nos temas de esti-
macao de emissao de gases de efeito estufa em veiculos a combustao (ICV), modelos de
energia para veiculos elétricos BEV, estimativas de estado de carga (SOC), preparagao
de dados de rastreio de GPS e, por fim, aplica¢cbes de modelos de energia para veiculos

elétricos.

2.1 Estimac3o de emissdo de gases de efeito estufa (GEE)

Modelos de estimativa de consumo energético ja datam bem anteriormente a po-
pularizacao de veiculos elétricos. Na realidade, a estimativa de consumo de combustivel
e de emissoes de C'O, em veiculos a combustao ja levou ao desenvolvimento de diversos
modelos de estimativa de consumo energético. Isso ocorre devido a forte correlagao entre
o consumo de energia, o consumo de combustivel e a emissao de C'Os, uma vez que o
consumo de combustivel alimenta o sistema energético do motor, e a sua combustao é res-
ponsavel pela emissao de gases. Nesse sentido, o desenvolvimento de modelos de emissao

e consumo de combustiveis é precursor a modelos energéticos para veiculos elétricos.

Conforme destacado por Paschoal et al. (2017), diversos modelos tém sido empre-
gados para tais finalidades. Entre os mais notaveis para a estimacao de emissoes de Gases
de Efeito Estufa (GEE), destacam-se o MOBILE, o COPERT e o MOVES. O MOBILE,
desenvolvido pela Agéncia de Protecao Ambiental dos Estados Unidos (U. S. Environmen-
tal Protection Agency, 2003), calcula a taxa de emissao da frota por categoria de veiculo
(em g/milhas), com base em varidveis relacionadas a frota e ao ambiente. O COPERT,
cujo nome se refere ao Programa de Computador para Calculo de Emissoes de Transporte
Rodoviario (Computer Programme to Calculate Emissions from Road Transport) (Ntzi-
achristos et al., 2009), estima as emissdes do motor com base na distdncia percorrida e
em fatores de correcdo associados a velocidade média e a sua variacdo. Por sua vez, o
MOVES é um modelo desenvolvido pela USEPA (Koupal et al., 2003) que busca calcular
a Poténcia Especifica do Motor (VSP, em kW/Mg) e correlaciona-la com a emissao de

poluentes (em g/h).

Além dos modelos de GEE, também existem modelos de previsao de consumo de
combustivel. Dentre esses, um dos modelos citados por Paschoal et al. (2017) é o PERE.
O PERE (Physical Emission Rate Estimator) foi desenvolvido pela U. S. Environmental
Protection Agency (2004) para apoiar o desenvolvimento do MOVES, e busca estimar a
taxa de consumo de combustivel do veiculo em g/s, utilizando para tal uma estimativa

da poténcia demandada.
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Por ultimo, existem modelos que calculam ao mesmo tempo as emissoes de GEE
o uso de combustivel. Um desses modelos ¢ chamado de CMEM (Modelo Abrangente de
Emissoes Modais, em inglés). Este modelo é dividido em diferentes modos, usando infor-
magoes sobre como o veiculo é operado e um modelo para calcular a poténcia necessaria
pelo veiculo. Entao, junto com uma estimativa da velocidade do motor, ele calcula quanto

combustivel estd sendo usado (Barth; Scora; Younglove, 2004).

2.2 Estimativa de consumo de energia em veiculos elétricos

A modelagem do consumo de energia em uma rota é uma tarefa complexa, embora
necessaria. Para lidar com essa complexidade, diversos modelos de estimacao de energia
tém sido propostos na literatura. Segundo Qi et al. (2018), a estimativa do consumo de
energia de veiculos elétricos pode abordar diferentes niveis de detalhe (granularidades),

considerar uma variedade de fatores e seguir abordagens fisicas ou baseadas em dados.

A primeira caracteristica diz respeito a granularidade do modelo. Algumas aplica-
¢oOes requerem uma estimativa detalhada do consumo de energia ponto a ponto, enquanto
outras demandam uma aproximagao ao nivel de conexoes entre os nés de entrega. Assim,
os modelos podem ser classificados como microscépicos, que estimam o consumo de ener-
gia em cada ponto especifico, mesoscopicos, que utilizam parametros médios relativos a
trechos da viagem, ou macroscopicos, que estimam o consumo com base em parametros

médios ao longo de uma viagem inteira.

Em relacao a granularidade, modelos macroscopicos de estimativa sao mais ageis
e eficientes em termos de calculo. Contudo, eles nao levam em consideragao variacoes
pontuais no consumo de energia, o que pode resultar em falta de precisdo quando se
trata de necessidades especificas. Nesses casos, modelos mesoscopicos ou microscopicos
podem ser utilizados. Zhang; Yao (2019) desenvolveram um modelo linear mesoscépico
para veiculos elétricos que leva em consideragdo, dentre outros fatores, as velocidades
médias e o chamado VSP, a poténcia instantanea por unidade de massa. Com relagao
aos modelos microscépicos, segundo Fiori; Ahn; Rakha (2016), eles podem ser divididos
entre modelos forward e backward. Os modelos backward calculam a poténcia necessaria
para possibilitar a tragao do veiculo nas rodas, e, de forma inversa, calculam a poténcia
gerada nos motores. Por outro lado, os modelos forward partem da poténcia gerada pela
interagao de componentes internos do motor para dimensionar a energia gasta. Os modelos
forward sdo amplamente utilizados na industria para identificar os componentes com maior
impacto no consumo energético do veiculo. No entanto, eles tendem a ser mais complexos
do que modelos backward, além de dependerem muito especificamente dos componentes

do veiculo modelado.

A segunda caracteristica diz respeito ao modelo utilizado. Existem modelos estatis-
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ticos, também conhecidos como baseados em dados (data-driven), nos quais algoritmos sao
utilizados para estimar o consumo de energia por meio do ajuste de parametros. Por outro
lado, existem modelos analiticos, nos quais as equagoes sao formuladas de maneira fisica
e explicavel. Além disso, também existem modelos hibridos, que combinam as abordagens
estatistica e analitica. Dada a disponibilidade abundante de dados provenientes de siste-
mas de rastreamento de veiculos, seria viavel criar modelos de consumo de energia que se
baseiam unicamente nos dados, sem a necessidade de pressupostos fisicos preestabelecidos.
Um exemplo disso é o estudo realizado por Pamuta; Pamuta (2020) para 6nibus elétricos,
onde foi modelado o consumo de energia utilizando redes neurais recorrentes, sem uma
formulagao fisica na estrutura da modelagem. Entretanto, como mencionado em Fiori et
al. (2021), abordagens baseadas em dados, apesar de atrativas por nao dependerem de
suposigoes prévias, possuem a desvantagem de que os parametros encontrados nesses mo-
delos geralmente nao podem ser extrapolados para outras estimativas, uma vez que sao
ajustados especificamente para tipos particulares de veiculos, regioes e operacoes. Nesse
contexto, a imposicao de equacoes fisicas aos modelos pode se mostrar vantajosa, uma

vez que melhora a explicabilidade dos parametros e sua aplicabilidade a outras situagoes.

A terceira caracteristica esta relacionada ao impacto de variaveis externas no mo-
delo. Devido a influéncia de diversos fatores no consumo de energia, estes podem ser
explicitamente considerados na modelagem ou afetar indiretamente pardmetros como ve-
locidade e aceleracao. Em relacao a incorporacao de variaveis externas, esse processo varia
conforme a aplicagdo. Em cenarios com dados reais, onde informagoes sobre velocidade,
congestionamentos e condi¢oes da via, como a presenga de buracos, estao disponiveis, tais
efeitos podem ser absorvidos no perfil de velocidades e aceleragoes medidos. Entretanto,

em modelos de simulagao, pode-se considerar essas variaveis e inclui-las na modelagem.

De forma geral, a formulagao "backward'da poténcia de tragdo necessaria nas rodas
do caminhao é feita com uma derivacao simples da segunda lei de Newton. Os principios
da dindmica do veiculo podem ser aplicados a qualquer veiculo, seja ele elétrico ou nao,
explicando também a semelhanga com modelos como o CMEM, (Barth; Scora; Younglove,
2004). Tal qual derivado em Abousleiman; Rawashdeh (2015), pode-se assumir que as for-
¢as que atuam no veiculo sao resisténcia ao rolamento, resisténcia ao gradiente da via
(forga gravitacional tangencial), forga de resisténcia ao ar e a forca de aceleragdo. A soma
dessas forcas, multiplicada pela velocidade, nos fornece uma poténcia instantanea neces-
saria nas rodas para permitir o movimento do veiculo. Baseada nas equagoes dindmicas,

a expressao final da poténcia nas rodas, Py (t) é:

Py (t) =[(M(t)-a(t))+ (M(t) - g-sinf) + (M(t)-g-Cg - cosb)
1 (2.1)

+(5 0 Cp - Ap-v(®))] - v(t)

Em que Py () é a poténcia de tragdo em W, M (t) é a massa do veiculo no instante
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de tempo t em kg, a(t) é sua aceleragao em m/s*, v é a velocidade em m/s, g é a aceleracio
da gravidade em m/s? 6 é o angulo da via (grade), Cr é o coeficiente de resisténcia ao
rolamento, Cp é o coeficiente de arrasto, p é a massa especifica do ar em kg/m® e A; é a
rea frontal do veiculo em m?2. Essa expressao é utilizada em diversos modelos e aplicacoes,
como Barth; Scora; Younglove (2004), Fiori et al. (2021), Pelletier; Jabali; Laporte (2019)
ou tendo apenas algumas variagoes em sua formulagao, como no VT-CPEM (Fiori; Ahn;
Rakha, 2016).

Além dos elementos que impactam a poténcia de tragdo necessaria para o vei-
culo, existem fatores que afetam diretamente o uso dos sistemas auxiliares, gerando uma
poténcia adicional. Dentre os sistemas que consomem tal poténcia adicional, podemos
citar sistemas de som, luzes do painel e, principalmente, sistemas de HVAC, ou seja, ar-
condicionado e aquecimento. Em temperaturas mais frias ou quentes, o uso de aquecedores
e ar-condicionado se torna mais intensivo. Portanto, a temperatura pode ser considerada

uma variavel preditora do uso desses sistemas, tal qual modelado por Fiori et al. (2021).

No contexto de veiculos elétricos, outro componente que pode ser incorporado a
modelagem do consumo energético sao os sistemas regenerativos. Assim, o consumo de
energia em veiculos elétricos pode ser dividido em duas partes: a energia cinética positiva
e a energia cinética negativa, esta ultima relacionada as caracteristicas regenerativas dos
sistemas de frenagem do veiculo, em inglés regenerative braking system (RBS). O RBS
facilita a recuperagao da energia, evitando a dissipagao de energia em forma de calor em

sistemas de frenagem baseados em atrito.

O impacto do sistema regenerativo no consumo de energia foi abordado de diver-
sas maneiras na literatura. Shibata; Nakagawa (2015) e Abousleiman; Rawashdeh (2015)
consideraram um coeficiente de regeneracao constante, independente da poténcia, velo-
cidade ou aceleracao instantaneas. Por outro lado, uma abordagem alternativa, adotada
por Hayes; Davis (2014), envolve a discretizagdo de intervalos de poténcia instantanea,
com variacdo percentual na regeneracao em faixas, sendo 100% para valores inferiores a
20kW. Yang et al. (2014) adotaram um modelo no qual o coeficiente de regeneracao varia
em funcao da velocidade, com uma funcao distinta para velocidades acima e abaixo de
5m/s. Uma outra abordagem, usada no modelo VT-CPEM, Fiori; Ahn; Rakha (2016),
é representar o coeficiente de regeneracao como uma funcao exponencial em relagdo ao

inverso da magnitude da frenagem.

2.3 Estimativa de Estado de Carga (SOC)

Pode-se dizer que a estimagdao do estado de carga (State of charge - SOC) em
veiculos elétricos tem um paralelo com a estimacao do consumo de combustivel em veiculos

a combustao interna. No contexto dos veiculos a combustao, a estimativa do consumo de
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combustivel auxilia na compreensao de como a energia potencial quimica armazenada
no combustivel se converte em energia mecénica, impulsionando o veiculo. Da mesma
forma, nos veiculos elétricos, a estimativa de SOC estd relacionada a carga armazenada
na bateria, que permite a geragao de energia elétrica e, subsequentemente, sua conversao
em energia mecanica para a locomoc¢ao do veiculo. Nao existe um consenso formal sobre
a definigdo de SOC (Zheng et al., 2018; Chang, 2013), mas, em geral, ela é definida como

a razao entre a capacidade atual da bateria Q(t) e sua capacidade nominal Q.

Existem diversos métodos para a estimagdo de SOC. Segundo Chang (2013), po-

dem ser listados quatro principais categorias de métodos para tal estimagao:

1. Mensuracao direta: utiliza medidas como diferenga de potencial e impedancia e
correlaciona tal medida com um valor de SOC (em %), por meio de uma curva. Um
dos métodos mais utilizados nessa categoria é o método de tensao de circuito aberto
(em inglés Open Clircuit Voltage Method, OCV). Em geral, o SOC' é modelado com
um relacionamento linear em relacdo ao OCV para baterias de chumbo-acido. No
entanto, esse relacionamento nao é linear em baterias de fon-litio, o que impde o

uso de uma tabela de valores (de-para) de OCV e SOC.

2. Estimativa contabilistica ou Book-keeping estimation: integra a quantidade de carga
eliminada ao longo do tempo e a compara com a carga nominal da bateria de modo

a estimar o SOC.

3. Sistemas adaptativos: utilizam diversas entradas, como medidas diretas de tensao
instantanea, histérico de tensao da bateria e temperatura ambiente, para a modela-
gem dessas variaveis a um valor de SOC' por meio de um sistema mateméatico como

uma rede neural ou um filtro de Kalman.

4. Métodos hibridos: combinam as estratégias supracitadas para estimacao de SOC.

Segundo Zheng et al. (2018), pode-se dizer que existe um trade-off entre minimi-
zagao de erro e complexidade computacional do método de estimacao de SOC. Segundo
o mesmo trabalho, existe incerteza tanto na estimacao de Q(t), como também no valor
de referéncia (). Em relagdo a capacidade nominal )y, ela pode ter seu valor alterado
pelo envelhecimento e pela temperatura ambiente. E apontado que o fator do envelheci-
mento pode ser ignorado em intervalos curtos de tempo, no entanto, nao é raro que as
baterias de ion-litio operem em um intervalo grande de temperaturas, o que pode influ-
enciar na capacidade disponivel. O erro associado & estimacao de Q(t) é dependente do
método utilizado, mas tende a depender também de varidveis em comum que afetam o
valor de referéncia. Ainda de acordo com Zheng et al. (2018), mesmo para um método
simples baseado em OCYV, os efeitos de saude da bateria, temperatura e histerese nao

sao bem considerados nas tabelas de SOC-0OCYV. Apesar de muitos métodos de estimacao



34 Capitulo 2. Revisdo da Literatura

tenham reportado valores de erro baixos (menores que 1%), esses resultados sao obtidos
em condig¢oes controladas. No contexto de uma operagao, ainda segundo o mesmo artigo,
a depender do sistema do veiculo, pode ser necesséario recalibrar o sistema de estimacao

a cada 9 dias para manter o erro do SOC em valores inferiores a 5%.

2.4 Preparacao de dados de GPS

Dados de GPS (Global Positioning System) consistem em informagoes de localiza-
¢ao obtidas por meio de satélites. Cada vez que um dispositivo, como um celular contendo
um receptor de GPS, registra sua posigao, ele coleta dados que incluem as coordenadas

de latitude e longitude, a hora e, frequentemente, a velocidade do veiculo.

No entanto, os dados de GPS sao conhecidos por serem esparsos e imprecisos em
algumas situagoes (Laranjeiro et al., 2019). Isso ocorre porque a qualidade dos sinais
de satélite pode ser afetada por obstaculos, como edificios altos ou areas com cobertura
deficiente, resultando em leituras imprecisas ou atrasadas. Além disso, o préprio aparelho

celular pode apresentar falhas no componente de sinal.

Algumas indicagoes de observagdes erroneas coletadas via GPS incluem velocidades
e aceleragoes irreais. Segundo Schiissler; Axhausen (2008), velocidades acima de 180 km/h

ou aceleragoes acima de 10 m/s? indicam pontos com medidas a serem descartadas.

Segundo Laranjeiro et al. (2019), a limpeza de dados de GPS pode ser feita em
etapas. Em primeiro lugar, é calculado o deslocamento utilizando-se a distancia de Ha-
versine entre dois pontos de latitude e longitude determinada. Com essa informagao e
o intervalo de tempo, pode ser calculada a velocidade média entre os dois pontos e, em
seguida, a aceleragao média. Para a limpeza, pontos com valores extremos de aceleracao
e velocidade sdo retirados. E importante ressaltar que a velocidade média inferida e a ve-
locidade instantanea medida pelo GPS sao diferentes. No caso do GPS, o efeito Doppler
é aplicado as ondas de radio transmitidas pelos satélites para o receptor GPS de modo a

estimar a velocidade do receptor (Zhang et al., 2006).

Segundo Plaudis et al. (2021), mesmo com a retirada de pontos anormais, as rotas
de GPS ainda sao pouco precisas e podem ser associadas a dois tipos principais de erros: o
primeiro é associado a um desvio do ponto real e o ponto registrado pelo GPS, o segundo é
um erro de amostragem, em que existe a perda de informacao entre dois pontos. De modo
a minimizar os dois tipos de erro, dados de GPS sao processados por algoritmos chamados
de map-matching. Esses algoritmos tém a responsabilidade de associar as observacoes de

GPS a infraestrutura de estradas e vias, tal como ilustrado na figura 7.

Muitos provedores de servicos de map-matching, como Valhalla, Mapbox e GraphHop-

per, utilizam o algoritmo de cadeia de markov oculta (HMM) baseado no trabalho de
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Figura 7 — Ilustracao do resultado de um algortimo de map-matching. Os pontos verme-
lhos sao os registros de GPS e os azuis sao os pontos na trajetoria reconstruida.
Fonte: Saki; Hagen (2022)

Newson; Krumm (2009). Este método envolve a alocacdo de N segmentos possiveis para
uma determinada observacao, com base na proximidade espacial (utilizando a distancia
de Haversine) entre a observagio e os diversos segmentos vidrios. Além disso, utilizando o
grafo que descreve a estrutura viaria do mapa, sao calculados custos associados as transi-
¢Oes potenciais entre as arestas representando os estados subsequentes do sistema. Dado
o conhecimento das probabilidades de transicao, o algoritmo de Viterbi, que encontra a
sequéncia mais provavel de estados ocultos em um modelo de cadeia de Markov, é aplicado

para determinar a rota mais verossimil nesse contexto.

2.5 Aplicacoes de Modelos de Energia

Os modelos de estimacao de gasto energético de veiculos elétricos tém diversas
aplicagoes a nivel operacional e estratégico. Do ponto de vista operacional, os modelos
de energia tém aplicagoes em eco-routing e em roteirizacao (Xiao et al., 2021). A nivel
estratégico, os modelos podem, entre outros, ser utilizados para definicao de instalacao de
infraestrutura de carregamento e dimensionamento de frotas (Pelletier; Jabali; Laporte,
2019),.

A aplicagao de modelos de energia esta relacionada nao somente a sua proposicao
matematica e derivagdo de parametros estatisticos, mas também a sua aplicagdo em con-
textos ainda nao observados. Nesse sentido, a aplicagao de tais modelos pressupoe dados
artificiais, que simulem o que seriam as condi¢oes de direcdo de situagoes hipotéticas.
Nesse sentido, sao utilizados simuladores de modo a estimar os perfis de velocidades e ace-
leragdes dos veiculos. Um dos simuladores de referéncia é o FASTSim: Future Automotive
Systems Technology Simulator (Brooker et al., 2015). De forma similar, Genikomsakis;

Mitrentsis (2017) desenvolveram um modelo de simulagao integrado ao modelo de energia
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VT-CPEM (Fiori; Ahn; Rakha, 2016) para estimacao de consumo energético em rotas

simuladas.

Existe um grande desafio do ponto de vista de integrar tais simula¢des em proble-
mas de otimizacao numérica, uma vez que se torna, em muitos casos, computacionalmente
desafiador fazer cdlculos para todos os arcos possiveis entre nos de entrega, dada a natu-
reza combinatoéria do problema. Nesse sentido, algumas simplifica¢cdes podem ser adotadas.
Xiao et al. (2021) utilizam uma linearizac¢ao das fungoes de poténcia e de célculo de energia
microscopico, de modo a inclui-las como funcao de custo de um problema de otimizacao
linear para roteirizacao de veiculos elétricos. No trabalho de Pelletier; Jabali; Laporte
(2019), é utilizado um modelo de energia microscopico sem regeneragdo para estimar a
energia consumida entre um arco de um grafo de vias. O grafo de vias é diferente do grafo
de entregas, no grafo das vias cada né é um cruzamento e os arcos sao os segmentos de
via entre os cruzamentos. Nesse contexto, é assumido um perfil de velocidades trapezoidal
entre dois nés da via e, entao, é calculada a energia desse arco. No estudo, assume-se o
caminho mais curto da via entre dois nés de entrega e, assim, é feito um céalculo de energia

simplificado entre tais nés de entrega.

Shamma et al. (2022) desenvolveram o Electric Vehicle Path and Range Estimator
(EVPRE), um software de planejamento étimo de rotas para veiculos elétricos. Este soft-
ware utiliza informacdes de vias, utilizando dados do OpenStreetMaps, Google Maps e
Tomtom, do veiculo e do FASTSim e alimenta um modelo fisico para estimar o consumo
energético e distancia percorrida por uma dada rota. Com isso, é desenhado uma espécie
de mapa de contorno de um veiculo ao redor de um ponto. A regiao "verde", seria a regiao
mais segura de operacgao do veiculo. O modelo utilizado pelo EVPRE nao incorpora uma
modelagem para a regeneragao dos freios. Atualmente, alguns algoritmos de otimizagao
multiobjetivo estao sendo integrados a este software para possibilitar a otimizacao de ro-
tas que atendam a multiplos objetivos, tais como tempo, energia e trafego (Shamma et
al., 2022).
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Figura 8 — Diagrama do sistema do software EVPRE
Fonte: Shamma et al. (2022)

Do ponto de vista estratégico, Rogge et al. (2018) desenvolveram uma metologia
de otimizacao de custos para scheduling de viagens e carregamento de uma frota de énibus
elétricos, utilizando uma simulagdo de consumo de energia como input e, posteriormente,
utiliza um algoritmo genético e um modelo de otimizagao linear para otimizacao do sche-
duling e da infraestrutura de carregamento. Por fim, sdo consideradas as implicagoes de

custo (T'CO - Total cost of ownership) da frota e da infraestrutura escolhida.
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Figura 9 — Diagrama da solucao de scheduling para frota de 6nibus elétrico
Fonte: Rogge et al. (2018)

Por fim, tendo em vista as principais técnicas de tratamento de dados e de modelos
de energia para veiculos elétricos e suas aplicagoes, seguiu-se para a definicao de materiais

e métodos deste trabalho.






3 Materiais e Métodos

A metodologia empregada envolveu o uso de trajetos historicos para a estimacao de
coeficientes de regeneracao e a associagao linear entre a energia estimada e a energia con-
sumida em uma rota, resultando em uma relacao analoga a uma eficiéncia, representada
pelos coeficientes de inclinacao e intercepto da regressao linear. Em seguida, parametros
mesoscopicos e macroscopicos foram estimados e submetidos a validagao em um conjunto

de teste. O procedimento adotado neste estudo pode ser visualizado de forma esquematica

na Figura 10.
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3.1 Coleta de dados

3.1.1 Dados de GPS

Os dados das rotas realizadas por veiculos elétricos durante os meses de julho,
agosto e setembro de 2023 foram coletados como parte de uma operagao de entrega de
bebidas e alimentos. Cada rota foi acompanhada de registros de GPS que incluiam in-
formagoes sobre a posicao e a velocidade do veiculo, obtidos por meio de um aplicativo
exclusivo da empresa, instalado nos dispositivos moéveis dos motoristas. Esses dados foram
amostrados a uma frequéncia média de aproximadamente um ponto de rastreamento a

cada 10 segundos.

O GPS fornecia a velocidade e as posicoes de latitude e longitude para um dado
tempo, essas sao as coordenadas que alimentam um algoritmo de map-matching. Com
relacdo a velocidade, existem duas maneiras de calculd-la usando o GPS. A primeira
envolve medir a diferenga de posicao ao longo do tempo, ja que todas as leituras de
posicdo do GPS sao registradas com informacoes de horario. Basta dividir a distancia
percorrida de Haversine (equacao 3.1) entre leituras consecutivas pelo tempo decorrido
entre elas. A segunda abordagem para obter dados de velocidade é utilizar um receptor
GPS e protocolo que fornegcam diretamente informagoes de velocidade. Para os dados
fornecidos, a velocidade estimada com o uso do efeito Doppler foi disponibilizada. Como
a determinagao com efeito Doppler é uma velocidade instantanea e tem um erro associado

menor (D'Este; Zito; Taylor, 1999), ela foi escolhida para ser utilizada como entrada no

modelo.
Alat Alon
a = sin® 5 + cos(laty) - cos(laty) - sin® 5
(3.1)
¢ =2 -arctan[2 (\/5, V1-— a)]
Dhraversine = R - ¢
Em que:

o Diaversine: A distancia entre os dois pontos na superficie da Terra.

e R: raio médio da Terra, que é usado para converter o angulo central ¢ em uma

distancia em quildometros. O valor tipico de R é aproximadamente 6.371 quilémetros.
o Alat: Esta é a diferenca de latitude entre os dois pontos na superficie da Terra.
« Alon: E a diferenca de longitude entre os dois pontos na superficie da Terra.

o lat; e laty: Sao as latitudes dos dois pontos comparados.



3.1. Coleta de dados 41

Além da distancia de Haversine, que leva em conta a curvatura da Terra, outra
abordagem que pode ser utilizada para o cdlculo de distancias entre pontos de GPS
¢ a conversao de coordenadas de latitude e longitude em um sistema de coordenadas
projetadas (Projected coordinate systems (PCS)), como o EPSG:3857 - Pseudo-Mercator,
que permitem o uso de geometria planar (em duas dimensées). Como o tamanho da
area considerada é de uma area geogréafica pequena, as duas abordagens tém resultados

semelhantes.

Neste trabalho, a distancia entre dois pontos foi calculada utilizando a férmula de
Haversine. Para o calculo de trechos envolvendo varios pontos, a conversao para o sistema

de coordenadas pseudo-Mercator, EPSG:3857, foi empregada.

3.1.2 Dados de pontos de entrega

Foram fornecidos dados de latitude e longitude referentes aos pontos de entrega,
juntamente com a ordem em que foram visitados, o nimero de caixas entregues e o status
de cada entrega. Para fins de estimativa de peso por pacote, uma amostra da massa (em
quilogramas) associada a cada pacote também foi disponibilizada e o valor de massa por

pacote foi estabelecido em 25 kg, como detalhado abaixo.

3.1.3 Dados de SOC na volta ao centro de distribuicao

Para verificar o nivel de bateria (SOC') dos veiculos ao final de cada rota, foram
examinados os checklists de chegada dos caminhoes, que incluiam uma fotografia (como

as da figura 12) do painel com a indicagao do nivel da bateria.

Como indicado na Figura 11, cada intervalo entre os pontos equivale a 3,125% do
nivel de bateria. A determinacado do nivel de bateria foi realizada por meio da contagem
do nimero de intervalos até atingir os quatro pontos de referéncia especificos, que eram
1; 0,75; 0,5 e 0,25. No entanto, é importante ressaltar que, para valores abaixo de 12,5% e
acima de 0%, apenas uma Unica marcacio intermedidria estava disponivel para afericao,

limitando a precisdo da medi¢ao nesse intervalo.

Dado que o propdsito dessas fotografias nao é registrar o nivel de carga da bateria,
mas sim servir como evidéncia da quilometragem do veiculo, em algumas situagoes, a

avaliacdo do nivel da bateria ndo era viavel, como na Figura 13.

Os valores de SOC que foram obtidos pelas fotografias foram convertidos em ener-
gia consumida por meio da féormula 3.2, que considera o valor de capacidade nominal da
bateria, ou seja, 105 kWh:

Eeonsumida = (1 - SOC) - 105 (32)
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Distadncia entre marcas representando
3,125% de carga

Figura 11 — Ponteiro de leitura do nivel de bateria
Fonte: autor

Figura 12 — Exemplos de fotos de checklist de retorno com indicagoes de bateria
Fonte: autor

Figura 13 — Exemplos de foto de checklist de retorno sem possibilidade de leitura de nivel
de bateria
Fonte: autor
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3.2 Preparacao de dados

3.2.1 Limpeza e filtragem inicial de rotas

Um processo de filtragem de rotas foi implementado com o intuito de selecionar

aquelas que atendessem a critérios especificos, que podem ser visto na figura 14 e sao

detalhados no texto abaixo.

Rotas
disponibilizadas
(GPS)
1317

Rotas com entregas
completas
disponibilizadas
268

Rotas cujo ultimo
ponto estava a
menos de 1km do CD
333

Rotas cujo com
coeréncia na ordem
de entrega
218

Rotas continuas
178

Rotas com leitura do
nivel de bateria no
painel legivel
[L:]

Figura 14 — Diagrama com quantidade e selecao das rotas para analise
Fonte: autor

Inicialmente, foram disponibilizadas 1317 rotas de veiculos elétricos, que partiram
do centro de distribuicao de referéncia. Entretanto, apenas 868 dessas rotas tinham todas
as suas entregas concluidas, sem entregas retornadas ou que foram parcialmente entregues.
Dentre essas rotas, varias nao incluiam o trajeto de volta ao centro de distribuicdo. Apesar
do fato de os motoristas serem orientados a utilizarem o GPS durante toda a rota, o
aplicativo de GPS pode apresentar instabilidade no envio de dados quando ¢é executado
em segundo plano. Uma vez que o aplicativo frequentemente opera em segundo plano
durante o retorno ao centro de distribui¢cao, um ntimero significativo de rotas nao continha

informagoes de GPS com relagiao a parte do retorno ao CD.

Depois de eliminar as rotas que nao atendiam a esses critérios, restaram 333 rotas.
Posteriormente, as rotas que apresentavam inconsisténcias na ordem das entregas foram
excluidas, pois significa que nao era possivel associar de maneira coerente os pontos de
entrega aos pontos do trajeto percorrido. Essa inconsisténcia pode ocorrer devido a pro-
blemas no cadastro da localizagao de alguns clientes. Esse processo reduziu o nimero de

rotas para 218.

Em seguida, as rotas foram submetidas a um processo de sele¢ao que considerou
apenas aquelas que aparentavam ser percursos ininterruptos, ou seja, rotas que exibiam
continuidade visual em seu percurso: alguns exemplos de rotas excluidas por esse critério
podem ser vistas na figura 15. Isso resultou em 178 rotas que atenderam a esse critério.
Por tltimo, as rotas que nao continham registros de medi¢cao de bateria no checklist
de retorno, ou cujos medidores de bateria nao permitiam leitura (por exemplo, devido ao
veiculo estar desligado), foram excluidas da andlise. Esse processo de triagem foi realizado
para garantir a inclusdao apenas de rotas completas e consistentes, nas quais a avaliacao
do nivel de bateria fosse vidvel, a fim de assegurar a integridade dos dados utilizados no

estudo. No final, restaram 78 rotas que foram utilizadas para analise.

Dentre as rotas selecionadas, foram aplicados procedimentos analogos ao descritos

por Laranjeiro et al. (2019). Ou seja, foram excluidos pontos de velocidades e aceleragoes
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® Pontos de entrega L @ FPontos de entrega ® Pontos de entrega

® Pontos de entrega

® Pontos de entrega

@ Pontos de entrega

Figura 15 — Rotas consideradas descontinuas.
Fonte: autor

acima de certos valores dentro do passo a passo descrito no artigo, ou seja, aceleracoes

maiores do que 10 m/s? e velocidades superiores a 180 km /h.

3.2.2 Designacao de pontos de entrega e estimacdao da perda de massa ao

longo da rota

Como mencionado, foram selecionadas apenas as rotas que constavam todas as
entregas concluidas. Esse procedimento se justificou devido a complexidade inerente ao
calculo da massa restante no caminhao em casos de entregas incompletas, pois seria im-
possivel saber o nimero de pacotes entregues. Posteriormente, para cada rota, o processo
de identificacdo dos pontos de entrega especificos envolveu uma abordagem sequencial,
onde a primeira entrega da rota era localizada ao percorrer a roteirizagao completa e, a
partir desse ponto, estabeleciam-se as restricbes para a busca dos pontos de parada sub-
sequentes apenas na porcao restante da rota. Um exemplo de rota com seus pontos de
entrega pode ser visto na Figura 16. Ressalta-se que as rotas nas quais nao foi possivel
identificar os pontos de entrega na ordem adequada foram excluidas da analise, uma vez
que foram observados alguns desvios nos dados, como registros incorretos de coordenadas
geograficas dos clientes, o que poderia resultar em informagoes imprecisas e comprometer

a integridade da analise.

Com o proposito de estimar a massa entregue nos pontos de entrega, foi utilizada
uma amostra de dados que continha informagoes referentes ao niimero de pacotes e a
massa total. Tal amostra continha 9845 entregas, em que se discriminavam o ntimero de
pacotes e a massa associada a tal nimero de pacotes. Podemos estimar um valor de massa

Mpacotes,i

especifica do pacote para a entrega ¢ como Mpacote,i = , em que Npacotes,i denota o

Npacotes,i
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Figura 16 — Exemplo de rota (em azul) e pontos de entrega (em vermelho)
Fonte: autor

nimero de pacotes e Mpacotes;; @ Massa associada. O valor médio de mpacote,i, foi de 25,65
kg. Como pode ser visto na Figura 17, a dispersao de massa por pacote foi relativamente
baixa, com a grande maioria dos pacotes se aproximando do valor médio. Para fins de

estimagao de energia, mpacote f0i considerado como 25kg.

Histograma de massa por pacote

1400
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Frequencia

600 <

400 1

200 7

T T T g
0 3 10 15 20 25 30 35 40
Massa por pacote (kg)

Figura 17 — Histograma de massa por pacote
Fonte: autor

Dessa forma, em um dado instante de tempo ¢, a massa do caminhao pode ser

descrita como:

M(t) - MO + (npacotes,t : mpacote,t) (33)

3.2.3 Map-matching

O tratamento de map-matching dos pontos amostrados por GPS envolveu o uso
do servigo Valhalla Meili com base em informagoes especificas da regiao sudeste do Bra-
sil, provenientes do OpenStreetMap (OSM) Geofabrik. Ademais, foram obtidos dados de
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altimetria, a fim de calcular o perfil de elevagao das vias percorridas. O processo compre-
endeu a configuracdo de um ambiente Docker para o servidor Valhalla, a preparacao e
a integracao dos dados OSM da regiao em questao e a subsequente execugao do servigo
Meili para o mapeamento dos pontos de GPS em relacao as estradas presentes no OSM.
A saida deste processo consiste em correspondéncias precisas entre os pontos de GPS e as
vias reais, para cada segmento também foi obtida a angulacao em graus da via, ou seja,

a declividade (grade).

3.3 Separacdo em dados de treino e teste

A separacgao de dados de teste e treinamento é uma pratica fundamental em apren-
dizado de maquina e andlise de dados. Ela envolve dividir um conjunto de dados em duas
partes distintas: uma para treinamento do modelo (conjunto de treinamento) e outra para
avaliagdo do modelo (conjunto de teste). Segundo James et al. (2013), a separacao entre
conjuntos de treino e teste deve ser feita por conta do fendmeno de sobreajuste (em inglés,
overfitting) ao qual os modelos estatisticos estao sujeitos, em que os pardmetros do modelo

se ajustam a ruido dos dados.

Das 78 rotas filtradas, 20%, ou seja, 16 delas, foram designadas a um conjunto de
teste. As 62 rotas remanescentes foram utilizadas como conjunto de treino. Em especifico,
os dados de treino foram utilizados para estimacao dos coeficientes de regeneracao e do
coeficiente de ajuste linear com a energia consumida. Os dados de teste foram utilizados

para a mensuragao do erro dos modelos.

3.4 Aplicacao e estimacao de parametros de modelos microscopi-

Ccos

Nesta secao serao destacados os parametros dos modelos microscopicos, sao eles:
o Coeficiente linear estimado por regressao

o Coeficientes de regeneracao ajustados por uma otimizacao numérica

3.4.1 Dados do veiculo e parametros do modelo de energia

Os parametros utilizados para entrada do modelo estao descritos na tabela 3.



3.4. Aplicacio e estimagdo de parametros de modelos microscépicos

47

Parametro Significado Unidade Valor Fonte
8. Coeficiente de i 0.01 Demir; Bektasg;
f resisténcia ao rolamento ’ Laporte (2011)
Demir; Bektasg;

Cp Coeficiente de arrasto - 0,7 Laegz)l;‘ée (6201a1§)7
My Tara do caminhdo kg 6380  Volkswagen (2023)
Tabulagao da

Mpacote Massa por pacote kg/pacote 25 empresa
Npacotes Numero de pacotes pacotes  Calculado Tabulagao da
empresa

a Aceleracao m/s*  Calculado GPS
v Velocidade m/s  Calculado GPS
g Aceleracao da gravidade m/s* 9,8 NIST (2023)
A : OpenStreetMaps

0 Angulo da via (grade) rad  Calculado (via Valhalla)
p Densidade do ar kg/m? 1,225 Picard et al. (2008)
Ay Area frontal m? 4,24864  Volkswagen (2023)

Tabela 3 — Parametros de entrada do modelo

3.4.2 Energia nas rodas do caminhao

Uma representagao de alto nivel do fluxo de consumo de energia de um tipico

veiculo elétrico pode ser verificado na figura 18. Neste trabalho nao foram modeladas as

poténcias associadas aos acessorios, ou seja, poténcias auxiliares.

Accessories

«:

Motor/ —p
Generator |<—

Transmission
system

->
‘_

Figura 18 — Fluxos de poténcia num tipico veiculo elétrico.

Fonte: Genikomsakis; Mitrentsis (2017)

Tal como observado na secao de revisao de literatura, a poténcia nas rodas do

caminhao pode ser descrita pela equacao:

2

Py (t) =[(M(t)-a(t)) + (M(t)-g-sinf) + (M(t)-g-Cg - cosb)

(2 O Ap - u(t))] (1)

(3.4)
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Nesse sentido, a energia necessaria para desempenhar tal poténcia é:

Ew = /Ot Py (t)dt (3.5)

Como a amostragem dos dados é discreta, a expressao 3.5 pode ser aproximada

COINo:

N
i=0
De modo a obter a energia em kWh (unidade usualmente utilizada para capacidade
de baterias veiculares), a unidade de poténcia na equacao 3.6 deve estar em kW (o que
pode ser obtido a partir do resultado da equagao 3.4 divido por 1000) e o intervalo de

tempo deve estar em horas.

3.4.3 Sistemas regenerativos

Os sistemas regenerativos de veiculos elétricos matematicamente podem ser repre-
sentados como um coeficiente ngp, que dita a porcentagem de uma poténcia negativa
(que ocorre em cenarios de frenagem ou descidas) que serd utilizada para carregamento

do sistema de baterias. Ou seja, a poténcia instantanea do veiculo pode ser expressa como:

P (1) se Py (t) >0
P(t) = § npL - Mem - NBAT = (3.7)

Pw(t) -npL - Mewm - MaT - MR caso contrario

Em que npy, € a eficiéncia da direcao, ngys € a eficiéncia do motor elétrico e ngar € a
eficiéncia da bateria. Para os fins dessa modelagem, nao serao estimados npr, € ngar € Npar,
e sim, apenas nrp e um coeficiente 3; a ser detalhado na se¢do sobre a regressao linear.
Isso foi feito pela dificuldade de se isolar os efeitos de cada um desses coeficientes numa
modelagem com dados com laténcia, isto é, o intervalo de tempo entre duas observagoes,

tal qual a dos disponibilizados.

3.4.3.1 Regeneracao linear

Na regeneracao linear, tal como modelado por Abousleiman; Rawashdeh (2015), o

coeficiente ngp é constante e independente da aceleragao. Assim:

Olregeneracio linear S€ G <0e Py <t> >0
NrRB = (3.8)
0 caso contrario
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3.4.3.2 Regeneracao exponencial

Tal como proposto por Fiori; Ahn; Rakha (2016), ngp pode ser modelado como

uma fun¢ao da aceleracao:

B aregeneragio exp
NrRB = | € a(t) sea<0e Py(t) >0 (3.9)

0 caso contrario
Em que a(t) é a aceleragao instantanea do veiculo.

3.4.3.3 Estimativa numérica de coeficientes de regeneracao

A calibragdo de Oyegeneracio exp € Qregeneragao linear S€ deu por meio da minimizagao
de uma fungdo de Goodness-of-fit (GoF). A fungdo GoF utilizada foi o erro quadratico

médio (MSE), enunciado na equagao 3.10.

12 R
MSE = - > (yi — 0:)? (3.10)
i=1
Nesse sentido, foi utilizado o pardmetro 6timo o5 € [Mregeneracio exps Cregeneracio linear|

que satisfizesse:

app = argmin M SE(agp) (3.11)

O problema de otimizacao foi resolvido com um solver utilizando o algoritmo de
NelderMead, implementado na biblioteca SciPy (Virtanen et al., 2020).

3.4.4 Regressao linear da energia consumida em funcao da energia estimada

A significativa laténcia média de 10 segundos entre os pontos de amostragem pode
resultar em uma representacao imprecisa de eventos de aceleragao e velocidade do veiculo,
levando a um erro na escala do consumo de energia. Além disso, ha a omissao das consi-
deracoes relativas a eficiéncia do motor, da bateria e do motorista. Com isso, ¢ plausivel
que a escala das estimativas de consumo de energia possa nao estar devidamente ajustada.
Adicionalmente, a nao inclusao das poténcias dos sistemas auxiliares pode introduzir um
erro sisteméatico nas estimativas. E importante ressaltar que os coeficientes de arrasto,
atrito e parametros semelhantes, utilizados como base para a andlise, nao estao isentos
de incertezas e erros inerentes. Estes coeficientes sdo, em sua maioria, derivados de ex-
perimentos realizados em condigoes especificas, as quais podem diferir substancialmente
das condig¢oes do estudo em questao, introduzindo assim uma fonte adicional de incer-

teza nos calculos. Além disso, o modelo adotado pode nao abranger todas as varidveis
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relevantes para a determinacao precisa da energia envolvida no sistema, potencialmente

subestimando ou superestimando o consumo.

Deste modo, a fim de diminuir o erro cometido pelo modelo pelos fatores supracita-
dos, realizou-se um ajuste a partir de um modelo linear para estimar o consumo global de
energia para cada rota. Nesse modelo, a variavel dependente é representada pela energia
consumida, conforme derivada pelo valor de SOC no painel do veiculo. Essa abordagem
foi adotada com o intuito de minimizar os impactos da laténcia, das ineficiéncias nao
consideradas e do impacto dos sistemas auxiliares, com o objetivo de proporcionar uma

estimativa mais precisa e robusta do consumo energético.

A relagdo matemadtica entre duas varidveis, geralmente representadas como Y (va-
ridvel dependente) e X (varidvel independente), na regressao linear simples pode ser ex-

pressa da seguinte forma (Devore, 2018):

Y:60+ﬁ1'X—|—8 (3.12)

Em que Y ¢ a variavel dependente, X é a variavel independente, 3, é o intercepto,
que representa o valor de Y quando X é zero. 31 é o coeficiente linear, que representa
a mudanca em Y para uma unidade de mudanca em X. ¢ é o erro, que representa a
variabilidade nao explicada pelos termos anteriores. A equacao de regressao linear é usada
para encontrar os valores estimados de Y com base nos valores de X e nos parametros da

regressao por meio do método dos minimos quadrados (Devore, 2018; James et al., 2013).

O ajuste das retas foi feito com auxilio da biblioteca statsmodels do Python,
Seabold; Perktold (2010).

De modo a verificar a validade do ajuste, foi feita uma andlise dos residuos da
regressao. Em primeiro lugar, foi verificada a homocedasticidade dos residuos. Homoce-
dasticidade refere-se a igualdade das variancias dos residuos em todos os niveis da variavel
independente. Em outras palavras, a dispersao dos residuos ao longo da linha de regressao
deve ser constante. Essa propriedade pode ser verificada com o teste de Breusch-Pagan.
Além disso, foi verificada a normalidade dos residuos. A normalidade implica que os resi-
duos se distribuem de acordo com uma distribuicao normal, o que é fundamental para a
validade das inferéncias estatisticas associadas ao modelo. Para tal, foi avaliado o histo-

grama dos residuos.
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3.5 Estimativa do consumo energético para modelos macroscépi-
cos, mesoscopicos e analise de erros para os modelos desenvol-

vidos

Uma vez ajustados os coeficientes nos dados de treino, foram, entao, estimados
parametros macroscopicos e mesoscopicos com relagao ao consumo energético. Para tal, o
consumo energético dos modelos com regeneracao linear, com regeneragdo exponencial e
sem regeneracao foram, ponto a ponto, multiplicados pelos coeficientes 3; ajustados, tal

qual a equacao 3.13.

Energiaajustada = Energiacalculada ’ 51 (313>

Em seguida, esse consumo energético foi dividido pela distancia em km percorrida
no intervalo correspondente ao ponto, obtendo-se o consumo energético por quilémetro

kW h/km instantaneo, como na equagao 3.14.

KWh

km’z

_ Energiayuiaaa (3.14)

Dpercorrida

EC;

Por fim, esse valor foi dividido pela massa instantanea M (t) do caminhao, obtendo-
se o valor de consumo energético por distdncia por massa em kWh/km/kg, tal qual a

equacao 3.15.

kWh .
= EC, i
ECes ecifica,i km s | = : 3.15

Logo ap6s, foram mantidos os pontos cuja distancia percorrida foi maior do que € = 0.01m

e removidos pontos outliers, ou seja, foram considerados apenas os pontos de velocidade

distancia percorrida
tempo percorrido

inferida ( ) entre percentil 10 e percentil 90. Uma vez filtrados os pontos,
foi calculada a média dos valores de consumo por distancia, £C;, em kW h/km e consumo
por distdncia por massa, ECespecificai €m kWh/km/kg para cada um dos trés modelos:

sem regeneracao, com regeneracgao linear e com regeneracao exponencial.

Tendo tais parametros estimados via dados de treino, foi feita a validagao deles
nos dados de teste. Para o caso dos parametros mesoscopicos ECespecifica; & €nergia foi
estimada da seguinte forma: para cada trajeto T; entre os nos de entrega 0; 1 e o; (sendo
o primeiro e ultimo n6 o CD), foi calculado o valor estimado de energia, conforme a
equacao 3.16.

FErnesoscopicai = ECespecifica - D1, - M (t) (3.16)

E, enfim, a energia mesoscopica estimada para a rota inteira se deu pelo somatério de

todos os T; pertencentes a rota:

Emesoscc’)pica == Z Emesoscépica,i (317>
7
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Para o caso dos parametros macroscépicos, foi calculada a energia estimada multiplicando-
se a distancia percorrida em cada rota pelo valor EC de cada modelo estimado (sem

regeneragao, com regeneragao linear e com regeneragao exponencial) e pelo valor nominal

105kWh
110km

estimativas, foi aferida a distribui¢ao do erro medido (definido tal qual a equagao 3.18) e

do fabricante, ou seja , que foi chamado de estimador dummy. Para cada uma das

o valor global de erro quadratico médio, o MSE, tal qual definido na equagao 3.10 e do
MAPE, definido na equacao 3.19.

€ = Yreal — Ypredito (318)
R real,i T redito,?

MAPE ==Y [y b predi ] - 100% (3.19)
nz‘:l Yreali

Dados os procedimentos descritos neste capitulo, seguiu-se com a sua aplicagao.

Analises de erros, aplicagoes e aprendizados sao discutidos no préximo capitulo.
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4 Resultados e discussao

Neste capitulo, sao apresentados os resultados e, subsequentemente, a andlise dos
mesmos. Inicialmente, os coeficientes dos modelos de regressao utilizados para estimar o
consumo de energia dos veiculos elétricos na frota sdo expostos. Posteriormente, a valida-
¢ao desses modelos é abordada, incorporando métricas de desempenho e a avaliacao da
precisao das previsoes. Por fim, analises derivadas dos modelos de energia sdo conduzidas.
A primeira é referente ao dimensionamento da frota, com base nos pardmetros macrosco-
picos estabelecidos. Uma segunda anélise é a de agrupamento de rotas para tentativa de

extracao de pardmetros macroscépicos geograficamente delimitados.

4.1 Coeficientes de modelo sem sistema regenerativo

O modelo que nao considera a regeneracao de energia foi ajustado aos dados de
treinamento, resultando em um coeficiente de determinacao (R?) de 0,731 e um valor F de
163,1, com base em 62 observacoes. Esse valor indica que o modelo consegue explicar uma
parte consideravel da variacao dos dados. Além disso, por meio do teste Breusch-Pagan,
foi possivel descartar a presenca de heterocedasticidade nos residuos do modelo. Adicio-
nalmente, é importante destacar que o intercepto do modelo nao demonstrou significancia

estatistica a um nivel de significAncia de 5%.

Do ponto de vista fisico, é esperado que o coeficiente angular da reta corrija um
erro de escala presente no modelo fisico, enquanto o intercepto pode ser interpretado como
um nivel de energia residual que permanece constante, independentemente das variagoes
na energia estimada pelo modelo fisico. A nao significAncia dessa energia residual neste
contexto ¢ interessante, ja que indica que nao ha algo como um erro sistematico sendo
cometido. Esse erro sistematico poderia vir de uma estimativa ruim acerca da real capa-
cidade da bateria, por exemplo. A figura com a regressao nos dados de treino pode ser

vista na Figura 19 e os plots de diagnostico dos residuos pode ser visto na Figura 20.

. Desvio ‘g Intervalo de
Coeficiente Padrio Estatistica t P-valor (t) Confianca a 95%
Intercepto 6.3791 3.323 1.919 0.06 [—0.269, 13.027]
Energia — 557y 0.041 12.771 0.00 [0.445,0.610]
estimada

Tabela 4 — Coeficientes estimados em regressao linear de energia gasta em funcao de ener-
gia estimada sem regeneragao
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Energia estimada (sem regeneracdo) e energia real
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Figura 19 — Regressao linear de energia gasta em funcao de energia estimada sem regene-
racao em dados de treino
Fonte: autor
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Figura 20 — Graficos de diagnéstico da regressao linear de energia gasta em funcao de
energia estimada sem regeneracao
Fonte: autor

4.2 Coeficientes do modelo com sistema regenerativo linear

Por meio de otimizacao utilizando o método de Nelder-Mead, o coeficiente ajustado
para o modelo de regeneracao linear (yegeneracio linear) f01 estabelecido em 1. Fisicamente,
isso significa que, para essa amostragem dos dados, o melhor valor estabelecido para tal
coeficiente considera que, nos momentos de frenagem, o sistema é capaz de recuperar
100% da energia disponibilizada. Esse valor estd, provavelmente, superestimado. Younes
et al. (2013) reportou, para um carro, valores de regeneragao variaveis, entre 10% a 35%
da energia recuperada, a depender de fatores de diregao e rota. Sterkenburg et al. (2011)
adotou valores entre 22% e 40% para um coeficiente linear de regeneracao para caminhoes
operando numa area urbana, em Roterdao. A hipdtese mais plausivel para a superestima-

¢ao do coeficiente de regeneracao estd associada com os intervalos de integracao - o que
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sera detalhado em sec¢oes subsequentes desse trabalho.

Nessa configuracao, a regressao linear resultou em um coeficiente de determinagao
(R?) de 0,613 e um valor F de 95,07, baseado em 62 observacoes. Adicionalmente, o teste
de Breusch-Pagan revelou a auséncia de heterocedasticidade nos residuos do modelo. A
figura com a regressao nos dados de treino pode ser vista na Figura 21 e os plots de

diagnoéstico dos residuos pode ser visto na Figura 22.

. Desvio s Intervalo de
Coeficiente Padrio Estatistica t P-valor (t) Confianca a 95%
Intercepto 11.6078 3.866 3.002 0.004 [3.874,19.341]
Energia ) 544 0.068 9.610 0.00 (0.520,0.794]
estimada

Tabela 5 — Coeficientes estimados em regressao linear de energia gasta em funcao de ener-
gia estimada com regeneracao linear
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Figura 21 — Regressao linear de energia gasta em funcao de energia estimada com regene-
ragao linear em dados de treino
Fonte: autor

4.3 Coeficientes de modelo com sistema regenerativo exponencial

Através do processo de otimizacao empregando o método de Nelder-Mead, o coefi-
ciente ajustado para o modelo de regeneragao exponencial (Qegeneracao exp) f01 estabelecido
em 0,01. O valor parece dentro de um valor aceitével, sabe-se que Fiori; Ahn; Rakha (2016)
adotou o valor de 0,0411 para um veiculo Nissan Leaf. No entanto, sabe-se que a estima-
tiva desse pardmetro pode ser desafiadora, Fiori et al. (2021) encontrou um intervalo de

confianca entre 0,005 e 1 para tal parametro em 6nibus elétricos.
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Figura 22 — Gréficos de diagnodstico da regressao linear de energia gasta em fungao de
energia estimada com regeneracao linear
Fonte: autor

Sob essa configuragao, a regressao linear apresentou um coeficiente de determina-
cao (R?) de 0,606 e um valor F de 92,55, com base em 62 observagdes. Além disso, a
analise de heterocedasticidade, conduzida por meio do teste de Breusch-Pagan, indicou a

auséncia de tal fendmeno nos residuos do modelo.

. Desvio g Intervalo de
Coeficiente Padrio Estatistica t P-valor (t) Confianca a 95%
Intercepto 11.2226 3.850 2.915 0.005 [3.522,18.924]
Energia 5197 0.067 9.751 0.00 (0516, 0.783]
estimada

Tabela 6 — Coeficientes estimados em regressao linear de energia gasta em funcao de ener-
gia estimada com regeneracao exponencial

4.4 Derivacdo de parametros macroscopicos € mesoscopicos

Com base na filtragem de pontos que apresentam distancias percorridas acima de
0,01 metros e velocidades estimadas (calculadas como a razao entre a variagao da posi¢ao
e a variagdo do tempo) situadas entre o percentil 10 e 90, procedeu-se ao ajuste da
energia calculada para cada modelo, utilizando o coeficiente linear derivado da regressao
linear. Como resultado, obtiveram-se os valores de consumo de energia em quilowatt-hora
por quilometro (kWh/km) na Tabela 7 e de consumo de energia em quilowatt-hora por

quilémetro por quilo (kWh/km/kg) na Tabela 8.
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Energia estimada (com regeneragao exponencial) e energia real

1401 |R-value: 0.78
P-value: 5.51e-14

120

100 -
]
2
o 80 4
]
2 .
® °% o .o
2 601 o0 O

P""
'p» ogp
40 . ’0
= ®
L ] .. '
20 |
o T T T T - - -
0 20 40 60 80 100 120 140

Energia estimada (com regeneracao exponencial)

Figura 23 — Regressao linear de energia gasta em fungio de energia estimada com regene-
ragao exponencial em dados de treino
Fonte: autor
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Figura 24 — Graficos de diagnéstico da regressao exponencial de energia gasta em funcao
de energia estimada com regeneragdo exponencial
Fonte: autor

Consumo por distancia

Modelo ajustado (EC), em kWh/km
Sem regeneragao 0,854
Regeneracgao linear 0,9155
Regeneracao exponencial 0,950

Tabela 7 — Valores de consumo por distancia ajustado (EC) para os modelos
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Consumo por distancia
Modelo ajustado por distancia e
massa, em kWh /km /kg

Sem regeneracao 9,415-107°
Regeneragao linear 10,461 - 1075
Regeneracao exponencial 10,076 - 1075

Tabela 8 — Valores de consumo por distancia e por massa ajustado (EC/kg) para os mo-
delos

4.5 Avaliacao de erros em dados de teste

Os modelos que fornecem estimativas de gasto de energia por distancia, baseados
no EC (kWh/km), foram categorizados como "macroscépicos’. Por outro lado, os modelos
que consideram gasto de energia por distancia e massa, baseados no EC/kg (kWh/kg/km),
foram classificados como "mesoscopicos’. Além disso, os modelos que realizam a estimativa
de energia ponto a ponto com a inclusao do ajuste do coeficiente linear foram denominados
"microscopicos’. O parametro de autonomia do fabricante, de 110km para 105 kWh, leva

a um valor de 0,954 kWh/km, e foi denominado com Dummy.

A métrica de erro quadratico médio (MSE) dos erros no conjunto de teste (16
rotas) para cada um dos modelos pode ser consultada na Tabela 9. E possivel verificar
que neste caso, o melhor valor foi obtido com o modelo microscépico com a modelagem

exponencial da regeneragao.

Com relagao a dispersao dos erros no conjunto de teste, a Tabela 10 apresenta
os valores médios, desvio padrao e quartis dos erros. De forma equivalente, a Tabela 11
apresenta esses valores em termos percentuais, ou seja, com relacao ao SOC. Tais tabelas,
assim como os boxplots da Figura 25, permitem verificar que apesar dos valores médios
de modelos macroscopicos em alguns casos se mostrarem melhores do que os de modelos
mesoscoOpicos e microscopicos, a variabilidade dos erros diminui conforme os modelos se

tornam mais granulares.

4.6 Comparacao entre os modelos

Devido a incerteza associada aos parametros dos modelos e a amostragem reali-
zada a cada 10 segundos, observou-se uma tendéncia sistematica de superestimacao do
valor da energia consumida pelos modelos fisicos. Essa tendéncia de superestimacao, por
sua vez, motivou a necessidade de correcao, a qual foi implementada por meio de um coe-

ficiente linear ajustado pela regressao linear. Esse coeficiente modela pardametros que nao
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Modelo Medio (MSE)
Dummy 218,42
Sem regeneracao (Macroscopico) 143,55
Regeneragao linear (Macroscopico) 178,59
Regeneragao exponencial (Macroscopico) 213,63
Sem regeneracao (Mesoscopico) 199,46
Regeneragao linear (Mesoscopico) 167,9
Regeneragiao exponencial (Mesoscopico) 160,18
Sem regeneracao (Microscopico) 186,61
Regeneracao linear (Microscépico) 109,09
Regeneragao exponencial (Microscopico) 106,96
Tabela 9 — Valores de erro quadratico médio para os modelos em kWh?
Erras dos modelos
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Figura 25 — Distribuicao de erros dos modelos mesoscopicos e macroscopicos

Fonte: autor

necessariamente foram considerados explicitamente na modelagem, assim como o erro sis-

tematico dos parametros considerados e calculados. A regressao linear foi selecionada por
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Modelo Média I])):;:;Z 1o Quarzt:l -
Dummy -8,13 12,75 -16,01 -10,19 -0,06
Sem regeneracao (macroscopico) -1,49 1228 -9,62 -3,64 6,34
Regeneragao linear (macroscépico) -5,55 12,55 -13,52 -7,88 2,43
Regeneragao exponencial (macroscopico) -7,86 12,73 -15,75 -9,95 0,20
Sem regeneracao (mesoscopico) 7,68 1224 -1,11 5,39 13,92
Regeneracgao linear (mesoscopico) 4,37 12,60 -4,63 2,34 10,57
Regeneragao exponencial (mesoscopico) 243 12,83  -6,67 0,56 8,61
Sem regeneracao (microscopico) 10,01 9,60 2,96 9,30 14,33
Regeneragao linear (microscopico) 2,68 10,43 -6,34 2,75 6,48
Regeneragao exponencial (microscopico) 2,61 10,34  -6,15 2,66 6,39

Tabela 10 — Distribuigao de erros (em kWh) dos modelos no conjunto de teste

varios fatores. Em primeiro lugar, por sua simplicidade e facil interpretabilidade. Além
disso, o modelo fisico ja incorporava diversas nao linearidades no consumo, e, portanto,
mesmo com o consumo energético tendo diversos fatores, a regressao linear mostrou um

funcionamento satisfatorio.

O interessante é que, em virtude desse coeficiente ser menor no caso do modelo
que nao considerava explicitamente a regeneracao, o consumo especifico de energia por
quilometro (kWh/km) desse modelo se revelou inferior em comparagao aos modelos que
incorporavam a regeneracao de forma explicita no modelo fisico. Ou seja, a regeneracao
nao era considerada, mas o modelo estimou um consumo EC (kWh/km) inferior (mais
eficiente) por conta do ajuste linear. Simplificadamente, a regenera¢ao é um consumo de
energia negativo, entao, se esta nao ¢ considerada separadamente, ela pode ser indireta-
mente modelada por um coeficiente linear menor. Isso destaca a influéncia significativa
da incerteza na eficicia dos modelos e ressalta a importancia da correcao desse viés, a fim

de obter estimativas mais precisas e confiaveis do consumo de energia.

Em termos gerais, notou-se que o modelo de autonomia de fabrica (Dummy) apre-

sentou o pior desempenho, evidenciado por um erro quadratico Médio (MSE) mais elevado.
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Modelo Média II)):;:;Z 1o Quar;ﬂ -
Dummy 18,14 2422 -3425 -19.15 -0,13
Sem regeneracao (macroscopico) -5,69 21,67 -20,10 -6,60 10,42
Regeneragao linear (macroscopico) -13,30 23,23 -28,75 -14,27 3,97

Regeneragao exponencial (macroscépico) -17,64 24,12 -33,68 -18,65 0,30

Sem regeneracao (mesoscopico) 12,10 19,36 -2,46 11,04 24,07
Regeneragao linear (mesoscépico) 5,94 20,72  -9.65 4,80 18,74
Regeneragao exponencial (mesoscopico) 2,33 21,561 -13.85 1,16 15,63
Sem regeneracao (microscopico) 16,44 13,09 581 17,75 26,43
Regeneragao linear (microscopico) 2,47 16,30 -12,94 5,08 11,39
Regeneragao exponencial (microscopico) 2,35 16,24 -12,60 5,11 11,44

Tabela 11 — Distribui¢ao de erros percentuais (SOC) dos modelos no conjunto de teste

Isso ocorreu porque a autonomia modelada de 110km para 105kWh, leva a um parame-
tro macroscépico de 0,9545 kWh /km - que se mostra mais conservador do que qualquer
um dos resultados derivados dos parametros macroscopicos calculados. Nesse sentido, o
valor de referéncia se mostrou uma superestimacao de consumo mais intensa do que a dos

demais pardmetros, levando a um erro quadratico médio de 218,42 kWh?,

E interessante notar que, no que diz respeito aos modelos macroscépicos, houve
uma tendéncia geral de superestimacao do gasto energético, mesmo com a corre¢ao via
coeficiente linear. Contrariamente, os modelos mesoscopicos tenderam a subestimar o
consumo de energia. Quanto aos modelos microscopicos, o modelo sem regeneragao apre-
sentou uma inclinacao para a subestimacao do gasto energético, enquanto os modelos com
regeneracao demonstraram uma tendéncia mais equilibrada, com uma leve propensao a
superestimacao. Uma hipdtese para isso é de que, no caso dos modelos mesoscopicos, com
a normalizacdo do consumo pela massa, o valor do intercepto - que foi desconsiderado
- se tornaria relevante, levando a uma subestimagao no valor consumido de energia. No
caso do modelo macroscopico, como nao héd uma normalizagao pela massa, houve uma

compensacao positiva do consumo energético global, que leva a tal superestimacao.
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No que diz respeito aos modelos macroscépicos, ou seja, na estimativa de um
pardmetro EC' em kWh/km, curiosamente, observou-se que o pardmetro do modelo que
nao considera a regeneracao foi inferior ao dos modelos que incluiam a regeneragao. Essa
discrepancia pode ser explicada pela forma como a energia foi ajustada, com base no
coeficiente angular da regressao linear, que foi menor para o modelo sem regeneracao.
Além disso, é importante notar que esse modelo, sem regeneracdo, também foi o que

demonstrou o menor erro quadratico médio (MSE).

Foi observado que o modelo macroscépico que nao considerava a regeneracao ob-
teve um desempenho superior a todos os modelos mesoscépicos, inclusive teve um MSE
inferior ao do modelo microscopico sem regeneracao. Isso é um achado notavel e sugere
que, para os propositos deste estudo em particular, a modelagem macroscopica sem rege-
neracao ofereceu uma estimativa relativamente precisa do consumo de energia. Isso parece
sugerir que a um nivel macroscopico de andlise, a regeneragao é melhor modelada como
um coeficiente linear global do que como duas componentes separadas (uma no modelo

fisico e uma no coeficiente linear da regressao).

Em uma analise geral, os modelos microscopicos que incorporaram a regeneragao
demonstraram ser os que mais se aproximaram do gasto de energia real, apresentando uma
menor dispersao dos valores. Essa descoberta ressalta a eficacia dos modelos microscépicos
na representacao das complexas dinamicas de consumo de energia e regeneracao em niveis
mais detalhados de granularidade operacional, contribuindo para estimativas mais precisas
e confiaveis do consumo energético. Esses modelos incorporam mais variaveis e situagoes
em sua modelagem, o que da a possibilidade de um calculo mais preciso do consumo

energético.

4.7 Fontes de ruido e erro no modelo

A presenca de erros de magnitude consideravel nos modelos desenvolvidos decorre
da complexa interacdo de diversos fatores de incerteza intrinseca a essa analise. Em pri-
meiro lugar, o alto intervalo de integragao (10s) se mostra excessivamente elevado para
estimativas precisas. Outro fator reside nas medigoes de velocidade obtidas por meio do
Sistema de Posicionamento Global (GPS), cuja precisao intrinseca frequentemente é afe-
tada por variabilidades ambientais e técnicas. Além disso, as medi¢des de posi¢ao do GPS,
mesmo apoés corre¢ao por meio de técnicas de map-matching, ainda subsistem como fonte
de incerteza. Outro elemento que gera erros é a incerteza associada a massa individual
de cada pacote transportado, que foi estimado em 25kg, porém nao é um valor padroni-
zado. Adicionalmente, a utilizacao de sistemas auxiliares, como o ar condicionado, nao foi
considerada, o que também pode induzir erros. Além disso, os coeficientes da literatura,

como arraste e atrito, também podem induzir erros. Por fim, os préprios dados da varia-
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vel dependente estao sujeitos a erros decorrentes da imprecisdo de medicao de SOC e da

leitura do painel na fotografia do checklist de retorno.

4.7.1 Energia consumida

Medir com precisao a carga nas baterias, particularmente em baterias de veiculos
elétricos, é um desafio complexo. A precisao na medi¢do do estado de carga (SOC) é
essencial para garantir a confiabilidade da estimativa da autonomia e para otimizar o
funcionamento do veiculo elétrico. No entanto, a medi¢cao da carga nas baterias esta
inerentemente associada a erros. Como dito na secdo de revisao de literatura, segundo
Zheng et al. (2018), os fabricantes de veiculos elétricos costumam estabelecer um erro
méaximo de 5% no SOC. No entanto, apenas alguns dias sem uma recalibragem do sistema

pode levar a um erro a um nivel maior do que este.

Além disso, a leitura do valor do SOC no painel foi feito via um mostrador de
ponteiro em uma foto tirada no momento de retorno do caminhao ao centro de distribui-
¢ao. Nao obstante, as circunstancias em que essas imagens sao obtidas nao obedecem a
uma padronizagao, resultando em angulos variaveis que induzem o efeito de paralaxe de
maneira nao uniforme. Tal cendrio, por si 86, pode suscitar leituras imprecisas. Adicional-
mente, uma série de desafios adicionais se apresentam, como, por exemplo, condi¢oes de
iluminagao insuficientes ou a presenca de reflexos na superficie do mostrador, os quais po-
dem comprometer a precisao das leituras. De forma complementar, é relevante mencionar
que os marcadores no mostrador do ponteiro sdo discretizados em intervalos de 3,125%,

inviabilizando, desse modo, a obtencao de valores de SOC com maior precisdo do que
1,5625%.

4.7.2 Energia estimada

A energia estimada utilizou primariamente o modelo de energia baseado na po-
téncia necessaria para promover tracao do veiculo. Todas as variaveis de entrada desse
modelo tém incertezas associadas, tanto as diretamente medidas como os coeficientes uti-
lizados. Em especifico, destacamos os erros associados a estimacao de massa, velocidade

e aceleracao.

4.7.2.1 Estimacao de massa

No calculo da massa do veiculo, uma média de 25 kg por pacote foi adotada como
um valor de referéncia. No entanto, ao examinarmos a amostra disponivel, notou-se que,
em algumas instancias, esse valor pode apresentar desvios significativos em relagao a

massa real dos pacotes. Apesar do desvio padrao ser relativamente baixo, com apenas 2
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kg, foram identificados casos extremos nos quais os pacotes pesavam tanto quanto 40 kg

ou tao pouco quanto 700 gramas.

4.7.2.2 Estimacdo de velocidade e aceleracio e associados ao intervalo de integracao

Como ja mencionado na secdo de metodologia, existe um erro associado a medic¢ao

de velocidades com efeito Doppler pelo sistema de GPS.

Outro fator digno de nota é que o calculo da aceleragao foi efetuado numericamente
a partir dos dados de velocidade, em vez de ser realizado através de um sensor fisicamente
acoplado ao caminhao. Isso resulta na utilizacao de uma aceleragao média em vez de uma

aceleracao instantanea.

De fato, é reconhecido que as acelera¢oes em veiculos geralmente seguem um pa-
drao caracterizado por picos e vales. Segundo Bokare; Maurya (2017), para caminhoes em
velocidades entre 20 a 30 km/h, o tempo médio de aceleracao é de 11 segundos e o de
desaceleracao, 16 segundos. Uma amostragem com laténcia média de 10 segundos, parece
estar dentro do tempo médio esperado para aceleracoes e desaceleragoes em velocidades

urbanas.

No entanto, o fator que parece induzir o maior erro na modelagem ¢ a alta laténcia
dos dados, que foi de, em média, 10 segundos. No trabalho de Zhang et al. (2020), foram
utilizados dados amostrados com uma laténcia de 1s (1Hz), ou seja, 10x mais frequente
e, ainda assim, foram observados erros percentuais médios (MAPE) de 12% na energia
consumida. Com uma amostragem também de 1Hz, como feita por Fiori et al. (2021), o
erro percentual médio foi de apenas cerca de 1%. O problema principal seria considerar a
poténcia compativel com a velocidade inicial como constante durante todo o intervalo de

integracao.

4.8 Analises derivadas dos modelos de energia

4.8.1 Dimensionamento de frotas com autonomia fixa (pardmetro macroscé-
pico)

Foi considerado um modelo simplificado de dimensionamento de frota, em que o
nimero de veiculos necessarios é calculado como a demanda didria (em km) dividido pela
capacidade de cada veiculo (em km), como na equagao 4.1. A capacidade de cada veiculo é
definida como a capacidade da bateria (em kWh) dividida pelo consumo médio de energia

(em kWh/km) (equacao 4.2).

Este modelo pressupoe, em primeiro lugar, que a demanda diaria de quilémetros é
constante ao longo do tempo, implicando que a frota é dimensionada para atender a essa

demanda média diaria. Nesse sentido, nao sao consideradas variagoes na demanda ao longo
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do dia ou da semana, o que pode levar a sub ou superutilizacao da frota em diferentes
momentos. A falta de consideracao de tais variacoes podem ter implicagoes significativas
em termos de impacto ambiental e econémico, uma vez que a frota pode ser subutilizada
em muitos momentos, resultando em maior consumo de recursos e custos mais elevados.
Além disso, o modelo considera o consumo EC (kWh/km) como base para determinar a
autonomia dos veiculos, sem levar em consideracao fatores adicionais que podem afetar de
maneira significativa a operagdo de uma frota. Dentre as omissoes notaveis, estao a falta
de consideracao das restrigdes associadas a velocidade média do veiculo e a duracao dos
turnos de trabalho dos motoristas e ajudantes, aspectos cruciais para o funcionamento

eficiente e adequado de uma frota de veiculos.

Demanda
Nveicu os — N 4.1
! Autonomia (+.1)
C idade bateri
Autonomia = —PACITACE DATCTIA (4.2)

EC

Como enunciado nas equagdes, o principal aspecto avaliado é o impacto de con-
sumo fixo no dimensionamento de uma frota. No entanto, como é sabido haver uma grande
variacao na autonomia esperada de um veiculo elétrico, analisamos a rela¢ao entre a pro-
babilidade de uma dada autonomia ser ultrapassada, o que levaria a parada do caminhao
em rota, e o tamanho da frota dimensionada com essa autonomia. Nesse sentido, é in-
troduzido o conceito de um erro do tipo 1, o qual denota a probabilidade de o consumo
efetivo de energia por quilometro superar um valor preestabelecido, em outras palavras, a
probabilidade de o veiculo esgotar a bateria quando se assume bateria com carga. O erro
do tipo 1 pode ser compreendido como a incerteza associada a possibilidade de os veicu-
los requererem uma quantidade de energia superior a prevista, o que, operacionalmente,
acarretaria em guincho ou na nao entrega de todos os pacotes. A probabilidade deste erro
pode ser denotada como a. Além deste erro, também existe o erro do tipo 2, que denota-
ria a probabilidade de se assumir um consumo superior ao que foi de fato executado, em
outras palavras, quando se assume que a bateria estaria esgotada, mas ainda ha carga. O
erro do tipo 2 pode levar a ineficiéncias, mas seu impacto em relagdo a imprevistos na
operacao € menor. Nesse sentido, seguiu-se um dimensionamento tendo em vista apenas

o erro do tipo 1.

Sabendo-se que o consumo FC em kWh/km segue uma determinada distribuicao,
podemos estabelecer um valor de probabilidade de erro do tipo 1 («) e derivar um limite
(threshold) a ser considerado para EC' e, com a equagdo 4.2, calcular a autonomia do

veiculo. Esse relacionamento entre aw e EC pode ser visto na Figura 26.

A partir de tal autonomia, procede-se ao dimensionamento da frota, mesmo em

cenarios onde o consumo efetivo pode, ocasionalmente, exceder ligeiramente as estimativas
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EC

a = probabilidade de
CONsSUMo maior que
EC

Figura 26 — Tlustracao de relacao entre EC e «
Fonte: autor

iniciais. Um valor maior de « torna o valor de EC' mais agressivo, aumentando a autonomia
esperada. Isso pode levar a altos custos operacionais relativos a parada do veiculo em rota.
Por outro lado, um valor pequeno de a pode levar a uma estimativa de consumo mais
cautelosa, o que por sua vez, diminui a autonomia esperada e poderia resultar em uma

frota superdimensionada.

A distribuigao dos consumos reais em kWh/km nos dados de teste pode ser visu-
alizada na Figura 27. Para avaliar a normalidade desses dados, foi conduzido o teste de
Shapiro-Wilk, resultando em um p-valor de 0,785. Portanto, com base nesse valor de p,
considerou-se que os dados seguem uma distribuicao normal. Além disso, a distribuicao
dos dados, conforme estimada via Kernel Density Estimation (KDE), apresenta uma nota-
vel semelhanga com uma distribui¢cao normal, como pode ser observado na Figura 28. Na
figura do kernel estimado, destacam-se linhas representando os valores de EC estimados

pelos modelos macroscopicos.

Foi calculada o consumo EC em kWh/km compativel com diferentes probabili-
dades de de erro do tipo 1 («). Para tal, foi calculada a média e desvio padrao de tal
consumo na amostra de teste, obtendo-se os valores de 0.84 kWh/km e 0.18 kWh/km
respectivamente. Considerando que os consumos médios de energia por distdncia (EC)
seguem uma distribui¢do ¢ com 15 graus de liberdade, dada a normalidade da amostra,
foi calculado o consumo EC compativel com um dado «. Para tal, foi calculado o valor t
correspondente a a com 15 graus de liberdade, e depois esse valor foi multiplicado pelo

desvio padrao de EC' e somado com sua média, tal como descrito na equagao 4.3.

EC = (Student-t(a, 15) * sp¢) + EC (4.3)

Procedeu-se ao dimensionamento de frotas para um valor fixo de quilémetros dia-
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Histograma de kWh/km
nos dados de teste
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Figura 27 — Histograma de consumo % em dados de teste

Fonte: autor
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rios. Foram estimadas frotas para os seguintes valores de «a: 0,5; 0,4; 0,35; 0,3; 0,47 («
correspondente a EC sem regeneracao); 0,34 (« correspondente a EC regeneracao linear);
0,27 (« correspondente a EC regeneragao exponencial); 0,263 (« correspondente ao modelo
Dummy); 0,2; 0,15; 0,1; 0,05; 0,01; 0,005; 0,001. O valor relativo a frota para « de 0,001 foi
estabelecido como 100%, e as frotas relativas aos outros valores de « foram representadas
proporcionalmente a essa frota (a de 0,001). O gréfico que ilustra essa distribui¢do pode

ser visualizado na Figura 29, também é possivel verificar os dados na tabela 12.
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Numero relativo de caminhoes necessarios em relacao ao menor alpha
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Figura 29 — Percentual (%) de caminhdes dimensionados para cada « em rela¢ao ao di-
mensionamento do menor « avaliado (min) - Qmin = 0.001
Fonte: autor



4.8. Andlises derivadas dos modelos de energia 69

« Consumo (kWh/km) Numero relativo de caminhdées (%)
0.001 1.51 100.0
0.005 1.37 90.7
0.010 1.30 86.6
0.050 1.15 76.6
0.100 1.08 T71.7
0.150 1.03 68.6
0.200 1.00 66.1
0.262 0.96 63.6
0.270 0.95 63.3
0.300 0.94 62.2
0.338 0.92 60.9
0.350 0.91 60.5
0.400 0.89 58.9
0.472 0.85 56.7
0.500 0.84 55.9

Tabela 12 — Resultado do dimensionamento de frota com base no erro do tipo 1

Dada a alta variabilidade do consumo EC' de energia por distancia, em kWh /km,
observado nas rotas, é notavel que a variacdo na tolerancia ao erro do tipo 1 leva a um
dimensionamento muito diferente da autonomia do caminhao e, consequentemente, no

dimensionamento da frota.

No caso de assumir uma autonomia média de 1.86 kWh /km, ou seja, uma auto-
nomia de 56,43 km, compativel com a operacao atual do CD, a probabilidade de erro do

tipo 1 seria inferior a 0,1 % segundo a distribui¢do da amostra de teste.

Segundo o modelo, uma erro do tipo 1 de 0,1 % presume uma autonomia de 69

km, ao passo que um erro de 5% presume uma autonomia de 91 km. Essa diferenca pode
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levar a um impacto de 23% no tamanho dimensionamento da frota.

De fato, o dimensionamento da frota com base nos modelos macroscopicos de
autonomia fixa nao é a opcao ideal. Isso se deve ao fato de que as chances de incorrer
em erros do tipo 1 sdo significativamente altas, resultando em na necessidade de um

parametro demasiadamente conservador, que pode levar a uma frota superdimensionada.

Nesse contexto, considerar modelos mais precisos, em que a probabilidade de erro
do tipo 1 é menor, como os modelos microscopicos, pode ser uma abordagem vantajosa.
Especificamente, a inclusao de uma margem de seguranga, chamada de "buffer"', nas esti-

mativas dos modelos microscopicos pode ser benéfica.

No entanto, para que essa abordagem seja viavel, é fundamental que o planeja-
mento de rotas utilize esses modelos microscopicos em vez de depender de um parametro
de autonomia fixa, como é comum. Incorporar esses modelos no planejamento de rotas é
um desafio computacional complexo e oneroso, mas ja foi realizado em estudos anteriores,

exemplificados por pesquisas como a de Xiao et al. (2021).

4.8.2 Clusterizacdo de rotas

Apesar da alta dispersao do consumo (EC) das rotas, uma estratégia possivel para
mitigar a alta dispersao do erro de modelos macroscépicos poderia envolver uma mode-
lagem regional desses parametros. Isto é, delimitando areas geograficas e considerando
variaveis especificas, como declividade e velocidade média seria possivel ter valores mé-
dios variaveis de consumo, que seriam utilizados a depender da regiao de entrega de uma
dada rota. Nesse contexto, uma tentativa de abordagem semelhante ao que foi feito no
trabalho de Veldzquez-Martinez et al. (2016) foi implementada para agrupar (clusterizar)
as rotas a partir dos dados de treino, buscando identificar valores médios de consumo. Pos-
teriormente, essa modelagem seria validada em rotas de teste, permitindo a avaliacao da
eficacia da consideragao regional na reducdo da dispersao dos parametros macroscopicos
e, consequentemente, aprimorando a precisao das estimativas de consumo. No entanto,
para os dados do presente trabalho, essa segmentagao nao se mostrou vélida, dada a falta

de variabilidade em locais de entrega.

Em primeiro lugar, foram consideradas algumas variaveis para clusterizagao de
rotas, como nimero de paradas, ponto de maior distancia até o CD, coeficiente de rege-
nerac¢ao exponencial médio, variagdo no grade e massa de entrega em cada uma das rotas
de treino do modelo. Foram avaliadas diversas combinagcoes de tais variaveis para clusteri-
zagao utilizando o algoritmo K-means, que organiza dados em grupos(clusters) com base
em centroides (James et al., 2013). Posteriormente, os clusters eram agregados conforme
a metodologia proposta em Veldzquez-Martinez et al. (2016), em que era feito um teste

de Tukey e clusters sem diferenca significativa de consumo eram agregados. No entanto,
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ao final do procedimento, os clusters colapsavam sempre em um mesmo cluster. Isso pro-
vavelmente ocorreu devido a uma baixa variacao de localizacao de entrega e condigoes de
operacao. Uma das tentativas de clusterizagao pode ser vista na Figura 30, onde pode ser
vista a sobreposicao das distribui¢oes de consumo de energia pelos clusters e, portanto, a

nao separabilidade destes.
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Figura 30 — Tentativa de clusterizacao de rotas
Fonte: autor

Apesar de esta metodologia nao ter produzido os resultados desejados, ela ainda
poderia ser aplicada caso mais rotas e com maior variabilidade de regiao de entrega

pudessem ser incorporadas.

4.9 Sintese de aprendizados

Com os dados obtidos durante a realizacao desse trabalho, foi verificado que con-
forme a granularidade dos modelos é refinada, eles tendem a ter uma dispersao de erro
menor. Para termos comparativos, dentre os melhores modelos de cada granularidade -
isto é, o microscopico e mesoscopico com regeneracao exponencial e 0 macroscopico sem
regeneracao - o modelo microscépico obteve um intervalo interquartil dos erros 18% menor

do que 0 modelo mesoscopico e 22% menor do que o modelo macroscépico.
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Nesse sentido, pode-se afirmar modelos microscopicos tem uma confiabilidade
maior e seu uso precederia uma carga de seguranga (buffer) menor e, para um mesmo
buffer, apresentaria uma probabilidade de falha menor do que os modelos das demais

granularidades.

No entanto, o uso de tais modelos impoe dificuldades tanto do ponto de vista
operacional como do ponto de vista computacional. Tais dificuldades dizem respeito a
complexidade de sua aplicacao. Computacionalmente, seria necessario reformular os al-
goritmos de roteirizagdo de modo a incluir estimativas com granularidade mais refinada
por meio de simuladores. Além disso, pouco adiantaria realizar tais simulagdes caso a
operacao diferisse em demasia do que foi simulado. Nesse sentido, seria necessario con-
trolar rigorosamente a ordem das entregas e as rotas realizadas. Sabe-se que tal controle

operacional se mostra um grande desafio por si so.

Além disso, para planejamentos de nivel mais estratégico, como localizagao de CDs
e dimensionamento de frotas é ainda mais dificil incluir modelos microscopicos, dadas as
incertezas inerentes desse tipo de planejamento, em que, frequentemente, nao se possui
a priori os locais de entrega e rotas a serem realizadas de forma detalhada. Para esses
casos de uso, uma estimagao macroscopica com agrupamentos, tal como foi tentado neste

trabalho, poderia se mostrar benéfica.

A sintese do trade-off entre confiabilidade e complexidade dos modelos de estima-

¢ao de energia em veiculos elétricos (BEVs) pode ser vista na Figura 31.

Microscopicos

Confiabilidade

Macroscopicos

Complexidade
Figura 31 — Ilustracao sobre o trade-off entre confiabilidade e complexidade de modelos

de energia.
Fonte: autor

Resumindo, tal como apresentado na introdugao, este trabalho teve como objeti-
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vos a aplicagdo de modelos fisicos microscopicos de energia com diferentes modelagens de
regeneracao, corrigidos por um coeficiente linear derivado estatisticamente. Além disso,
derivaram-se parametros mesoscopicos e macroscopicos a partir da aplicacdo desses dife-
rentes modelos microscépicos. Analisaram-se os erros, limitagoes e aplicagoes desses mode-
los neste capitulo. As conclusoes finais e sugestoes para futuras pesquisas serdao abordadas

no proximo capitulo.
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5 Conclusoes e proximos desenvolvimentos

5.1 Conclusao

A transicao para veiculos elétricos representa um avanco significativo em direcao a
uma logistica mais sustentavel. No entanto, ¢ importante reconhecer que ainda persistem
desafios significativos em relacao ao uso desse tipo de veiculo, sendo a restricao de autono-
mia uma das questOes mais proeminentes. A autonomia limitada das baterias em veiculos
elétricos pode gerar preocupacoes em relagao a possiveis interrupg¢oes na rota, especial-
mente em cenarios em que nao ha infraestrutura adequada para recarga. As consequéncias
associadas ao descarregamento da bateria durante uma rota podem variar desde atrasos
operacionais até a necessidade de resgates, impactando negativamente a eficiéncia e a

confiabilidade das operagoes.

A mitigacao dessas dificuldades muitas vezes requer um planejamento rigoroso da
rota e uma estimativa precisa da energia necessaria para a viagem. Nesse sentido, o uso de
modelos macroscopicos, ou baseados numa autonomia fixa, tem um erro consideravelmente
maior do que modelos microscopicos. Os modelos desenvolvidos nesse trabalho comprovam
essa realidade, com o erro quadratico médio do modelo microscépico com regeneracao
exponencial de 106,96 kWh?, ao passo que o mesmo modelo em escala macroscopica
obteve um erro de 213,63 kWh?. De forma a mitigar o impacto operacional do erro de
tais modelos, podem ser adotados buffers de energia reserva. Tais buffers enderecam o
problema da probabilidade de subestimagao da energia gasta pelos modelos (erros do tipo

1), mas acarretam em custos operacionais e subutiliza¢ao da frota.

A incorporacao de modelos com maior precisao pode diminuir o impacto econdémico
dos buffers, mas sua implementacao é desafiadora. Na literatura, podem ser encontrados
exemplos de implementacgao algoritmos de roteamento que incorporam modelos de estima-
¢ao precisos, como microscoOHpicos e mesoscopicos, no roteamento com o uso de simulagoes,
que consideram fatores como topografia, carga, velocidade e condigoes ambientais para

prever o consumo de energia.

No entanto, mesmo com um roteamento que tenha uma precisao e exatidao alta
para o consumo de energia, as incertezas operacionais, como ordem em que serao feitas as
entregas, distancias entre os nos de entrega e condigoes de transito, ainda podem gerar uma
variabilidade consideravel no consumo de energia. Até que uma infraestrutura mais abran-
gente esteja disponivel, que inclua postos de recarga, veiculos de resgate e mecanismos de
troca de bateria emergencial, a operacao segura de veiculos elétricos pode depender da

implementacao de estratégias de superdimensionamento de frotas e subdimensionamento
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de distancias por rota. Embora essas estratégias possam fornecer uma solugao temporaria,

elas também acarretam custos financeiros significativos para as operagoes.

Ainda que fosse atingido um cenario em que todos esses aspectos de infraestrutura
estejam devidamente implementados para dar suporte aos veiculos elétricos, é inegavel que
a operacao desses veiculos introduz uma complexidade que nao necessariamente encontra
um paralelo direto com os veiculos a combustao. A gestao da autonomia, o carregamento
e a manutencao das baterias, as flutuagoes nas condi¢oes de energia sao elementos intrin-

secos a operacao de veiculos elétricos que demandam abordagens distintas de modelagem.

Nesse contexto, ¢ fundamental que os modelos econdmicos e ambientais que ava-
liam o impacto das operagoes com veiculos elétricos incluam todos esses fatores. Em
especifico, tal como apontado nesse trabalho, é importante considerar as incertezas e pa-
rametros de seguranca associados a tais incertezas na modelagem financeira e ambiental
da operacao eletrificada. Além disso, a consideragao de tais elementos é importante para
a adaptacao de préticas de gerenciamento para promover uma transicao bem-sucedida
para veiculos elétricos em uma variedade de contextos operacionais. A andlise completa e
holistica desses fatores é um passo fundamental em direcdo a uma logistica mais susten-
tavel e eficiente, permitindo a tomada de decisoes informadas e estratégicas na adogao de

velculos elétricos.

5.2 Prdximos desenvolvimentos

Os futuros avancos seguintes a esse trabalho podem envolver a implementacao
dos modelos microscopico hibridos fisico-estatisticos que foram desenvolvidos neste tra-
balho no contexto de simulacao de rotas, com sua posterior integracao em modelos de
roteirizagao e tomada de decisoes sobre a localizagdo de Centros de Distribuigao (CDs) e

infraestrutura de carregamento.

Adicionalmente, seria vantajoso conduzir experimentos fatoriais com uma ampla
variacao operacional e a coleta de dados de alta frequéncia para a validacao das entradas do
modelo. Dentre esses dados capturados com alta frequéncia, preferencialmente constariam
o perfil de velocidades assim como o SOC (nivel da bateria) ao longo das rotas. Com tais
dados, também seria possivel conduzir a andlise de clusterizacao de rotas que nao foi
possivel viabilizar de forma satisfatoria nesse estudo. Tal coleta também poderia seguir
com a validagao dos coeficientes de regeneracao exponencial e linear que foram obtidos

neste trabalho.
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Apéndice A - Ambiente e cddigo

Cédigo Python de tratamento dos dados de GPS

Utilizando a biblioteca GeoPandas do Python, foi aplicado o seguinte tratamento

nos dados:

locations_valid = (
locations_valid.query ("distribution_ center_id == 401")
.assign (
location_timestamp=pd.to_datetime(locations["
location_timestamp']) ,
)
.sort__values(by=["tour_id", "location_timestamp"'],
ascending=True)
.assign (
dspeed=lambda dfa: dfa["speed"]. diff (),
dtime=lambda dfa: dfa]|'location timestamp']. diff().
dt.total seconds(),
frequency=lambda dfa: 1 / dfa["dtime"],
day=lambda dfa: dfa["location_ timestamp"'].dt.date,
weekday=lambda dfa: dfa["location timestamp"'].dt.
day_ name() ,
geometry=lambda dfa: dfa.apply(
lambda row: Point(row["longitude"], row|["
latitude"]) , axis=l1
)
previous_ geometry=lambda dfa: dfa.groupby("'tour_id")
["geometry"|.shift (1),
previous_ latitude=lambda dfa: dfa.groupby("tour_id")
["latitude"'].shift (1),
previous_longitude=lambda dfa: dfa.groupby("tour_ id"
)["longitude"]. shift (1),
distance=lambda dfa: apply_ harversine distance(dfa),
inferred__speed_ms=lambda dfa: (dfa|'distance"] / dfa
["dtime"]) . mask(
dfa["dtime" |.isna () | dfa["dtime"] = 0, 0
)
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inferred _speed_kmh=lambda dfa: dfa]"
inferred_speed_ms"] * 3.6,
mass__id=lambda dfa: (

dfa|"location timestamp'].dt.strftime ("%Yalid")

) .astype(str)
+ "7“

+ (dfa["license plate']).astype(str),
inferred__dspeed ms=lambda dfa: (

dfa [ "inferred speed_ms"] — dfa.groupby('tour_id'

) ["inferred speed ms"].shift (1)

)

inferred acceleration_ms2=lambda dfa: (
dfa [ "inferred dspeed_ms"] / dfa["dtime"]

) .mask(dfa["dtime" |.isna () | dfa["dtime"] =—

inferred__acceleration_kmh2=lambda dfa: dfa["
inferred acceleration_ms2"] % 3.6,
)
.query ("inferred speed_kmh < 150 and
inferred acceleration kmh2 < 10")

.drop (columns=["geometry", "previous geometry"])

def apply harversine distance(df):

lonl, latl, lon2, lat2 = (
df ["previous_longitude"]. values ,
df ["previous_latitude']. values,
df["longitude"]. values ,
df["latitude"]. values ,

)

lonl, latl, lon2, lat2 = map(np.radians, [lonl, latl,

lat2])
dlon = lon2 — lonl
dlat = lat2 — latl

0, 0),

lon2 ,

a = np.sin(dlat / 2.0) %x 2 4+ np.cos(latl) % np.cos(lat2) x

np.sin(dlon / 2.0) *x 2

¢ =2 x np.arcsin(np.sqrt(a))
km = 6367 * c
m = km x 1000
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return m

Cédigo Python para designar pontos de parada nas rotas

def get_ route_delivery points_matches(stop_points, route):

def

stop__points_ 3857 = stop_ points.to_crs(crs=3857)
route 3857 = route.copy().to crs(crs=3857)
last ts = "1990—01—01 10:41:11+00:00"
matches = []
for i in range(stop_points_3857.shape[0]):
route 3857 = route_3857.query("location_ timestamp >
@Qlast_ts")
stop_point = stop_points_3857.iloc[i : i + 1]
match = stop_point.sjoin_nearest (
route_ 3857, distance_col="d_point"', how="left ",
max_distance=100
)
match = match.sort_values (by=["location_timestamp"],
ascending=True)
last index right = match.iloc [0]["index right"]
last _ts = match.iloc [0]]"location timestamp" |
matches.append (last_ts)

return matches

add_mass_to_route(stop_points, route):

last_ts = get_route_delivery_points_matches(stop_points,
route )
route = (

route . merge (
stop_ points.assign (location timestamp=pd.to datetime
(last_ts)).reindex(

columns=["location_timestamp', "volume_ packages'

]
)

how="1left ",
on="location_ timestamp",
validate="1:1",

)

.sort__values(by="location_timestamp")
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.assign (
delta_mass=lambda dfa: dfa["'volume_packages"]. fillna
(0) * 5,

total loaded mass=lambda dfa: dfa['delta mass"].sum

0

current__truck mass=lambda dfa: (6380 + dfa|[’
total loaded mass"])

— dfa["delta_mass"].cumsum() ,

)

return route

Instalacao do servidor Valhalla

Para execuc¢ao do servigo Valhalla, foi utilizado um ambiente Docker. O Docker é
uma plataforma de cddigo aberto que simplifica a implantacao de aplicativos dentro de
contéineres. Uma vez instalado, o seguinte comando deve ser instalado, no caso de se ter

interesse no map-matching da regiao em questao.

docker run —dt —mname valhalla gis—ops—2 —p 8002:8002 —v $PWD/
custom_ files:/custom files —e tile urls=https://download.
geofabrik .de/south—america/brazil /sudeste—latest .osm.pbf —e
build elevation=True —e max x=—44 —e min_ x=—47 —e min_y=—25 —
e max _y=—21 —e gher.io/gis—ops/docker—valhalla/valhalla:

latest

Apoés a execugdo bem-sucedida, o servidor Valhalla GIS estard disponivel em http://localhost:8002.

Cédigo Python para chamada do servidor Valhalla

def make valhala_ request(route):
begin_time = route|"location_timestamp"].iloc [0]
meili_ coordinates = (
route . assign (
time=lambda dfa: (dfa["location timestamp"] —
begin_time) .dt.seconds
)
.reindex (columns=["time", "latitude"', "longitude"])

.rename (columns={"latitude": "lat", "longitude"': "lon"})
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def

def

.to_json(orient="records")

)

#meili_accuracy = str(route["accuracy "]. tolist())
meili_head = ’"{"shape":’
# Those are parameters that you can change according to the

Meili’s documentation

meili_tail = (

v "use timestamps ": true, "search__radius": 300, "
costing ":"bus ", "format":"osrm", "filters ":{"
attributes ":["shape", "edge.names","edge.way id","
edge.speed", "edge.lane__count", "edge.speed__limit", "
edge.speed", "edge.length ", "edge.road_class", "shape
", "matched.point", "matched. distance__along edge", '
matched. edge__index ", "edge. weighted__grade ", "edge.id",

"node. elapsed__time "], "action ":"include "} } """

) # ['",gps_accuracy:{meili_accuracy}"+

# Combining all the string into a single request

meili_request__body = meili_ _head 4+ meili_coordinates +
meili tail

url = "http://localhost:8002/trace_attributes'

# Providing headers to the request

headers = {"Content—type": "application/json"}

# We need to send our JSON as a string

data = str(meili_request_body)

# Sending a request

r = requests.post(url, data=data, headers=headers)

return r.json ()

__get_matched_edges(response):
matched edges = pd.DataFrame(response["edges"]) .reset index(
names="edge index")

return matched edges

__get_matches_and_ distances(response):
edge_match = |[]

edge distance = []

for match in response|"matched points']:

edge_match.append (match.get ("edge_ index"))
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edge distance.append (match.get ("distance along edge"))
return edge match, edge distance
def ~mapmatching2points(route, response):
if len(route) > 50
assert len(response['edges"]) > 0, "No edges matched for
long route’
matched_edges = _get_matched edges(response)
edge match, edge distance = _get matches and distances|(
response)
route = (
route . assign (edge index=edge match, edge distance=
edge distance)
.merge (
matched edges. assign (
edge index=lambda dfa: dfa['edge index"].astype(
float)
)
on="edge_ index",
how="1eft ",
validate="m:1",
suffixes=("", " mapmatch") ,
)
)
return route
def get_route_info(route):
response = make valhala_ request(route)
route = route.pipe(_mapmatching2points, response=response)

return route

Cédigo Python para estimar coeficientes de regeneracao

def calculate_ energy exponential(routes_geo, params):

alpha = params[0]
mass column="current truck mass"

speed_col="speed"
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tours = routes_geo.assign (
dspeed = lambda dfa: dfa[speed col]. diff(),
accel = lambda dfa: dfa|"dspeed"]/dfa["dtime"],
angle = lambda dfa: np.radians(dfa["weighted grade'
]. fillna (0)),

ptraction 1 = lambda dfa: dfa[mass column|*dfa[’
accel" |« dfa[speed col]/1000,
ptraction_2 = lambda dfa: dfa[mass_column|*g*np.sin (

dfa|["angle"])«dfa[speed_col]/1000,
ptraction 3 = lambda dfa: 0.5%xC dxareaxrho airx*(dfa|
speed__col]xx3) /1000,
ptraction_4 = lambda dfa: dfa[mass_column|*g*np. cos(
dfa["angle"]. fillna (0))*C rxdfa[speed col]/1000,
ptraction_total = lambda dfa: (dfa['ptraction 1"] +
dfa["ptraction_2"]|+ dfa["ptraction_3"|+ dfa["
ptraction_4"]),
regen_coeff = lambda dfa: np.where(
(dfa|'ptraction total"] < 0) & (dfa["accel"] <
—0.001) ,
np.exp(—alpha/dfa["accel"].abs()),
0
)
total p = lambda dfa: np.where(
dfa["ptraction total'] > 0, (dfa["
ptraction_total"']), dfa|["ptraction_total"]x
dfa|["regen_coeff"]
)
dtime__hour = lambda dfa: dfa['dtime"]/3600,
energy = lambda dfa: dfa|"total p"]xdfa["'dtime hour'

I
)

return tours

def calculate energy_linear (routes_geo, params):
alpha = params[0]
mass_column="current truck mass"
speed col="speed"
tours = routes_geo. assign(
dspeed = lambda dfa: dfa[speed col]. diff(),



92

Referéncias

accel = lambda dfa: dfa["dspeed"]/dfa["dtime"],
angle = lambda dfa: np.radians(dfa["weighted grade'
|. fillna (0)),

ptraction_1 = lambda dfa: dfa[mass column]|dfa["
accel"|xdfa[speed_col]/1000,
ptraction 2 = lambda dfa: dfa[mass column|*g+np.sin (

dfa|"angle"])«xdfa[speed col]/1000,
ptraction_3 = lambda dfa: 0.5%xC_dxareaxrho_air*(dfa|
speed__col]xx3) /1000,
ptraction 4 = lambda dfa: dfa[mass column|*xg*np.cos(
dfa["angle"]. fillna (0))*C_rxdfa[speed_ col]/1000,
ptraction total = lambda dfa: (dfa['ptraction 1"] +
dfa["ptraction_ 2"]4+ dfa["ptraction_ 3"|+ dfa[’
ptraction_4"]) ,
regen_coeff = lambda dfa: np.where(
(dfa|"ptraction_total'] < 0) & (dfa["accel"] <
~0.001),
alpha |
0
)
total p = lambda dfa: np.where(
dfa|["ptraction_total'] > 0, dfa["ptraction_total
"], dfa["ptraction_ total']xdfa|'regen coeff"]
)
dtime__hour = lambda dfa: dfa["dtime"]/3600,
energy = lambda dfa: dfa["total p']xdfa|"'dtime hour'

I
)

return tours

def merge with validation(tours, validation):

tours_agg = (

tours.groupby ([ "actual id"], as index=False)
-agg(
estimated _energy = ("energy', "sum'")

)

.merge (
validation , on="actual id", how="left", validate="
1:1"
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)

.assign (
error = lambda dfa: (dfa["true energy'| — dfa[’
estimated energy']) .abs(),

error_squared = lambda dfa: dfa["error"|s*2

)

return tours_agg

def goodness of fit exponential (params):
tours = calculate_ energy_ exponential (energy train, params)
tours_agg = merge_with_validation (tours,
validation_likelihood)

return tours_agg["error_squared'|.mean ()

def goodness of fit_ linear(params):
tours = calculate energy linear(energy train, params)
tours_agg = merge_with_validation (tours,
validation likelihood)

return tours agg["error_ squared'].mean ()

def get_regen_coeff(func , initial_ value):
result = minimize (func, [0.0411],
bounds=[(0.01, 1)],
method="Nelder—Mead ")

return result .x
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Considerando a elevada volumetria dos dados de GPS, serdao disponibilizados ape-

nas os dados agregados por rota.

Dados de treino (com modelo fisico microscépico) para ajuste da regressao linear.

Tabela 13: Dados de treino agregados - para regressao

Energia es- | Nivel de bate-| Energia  real | Energia  esti- | Energia es-
timada  pelo | ria (SOC) (calculada via | mada pelo mo- | timada  pelo
modelo  fisico SOC) (kWh) delo fisico com | modelo  fisico
sem  regenera- regeneragao com regene-
¢ao exponencial racao linear
(kWh) (kWh)
90.990448 0.570000 45.150000 69.617165 68.175051
69.699487 0.600000 42.000000 52.942439 51.843252
87.467255 0.320000 71.400000 56.715366 54.724233
101.692542 0.470000 55.650000 70.691476 69.217707
112.350404 0.316000 71.820000 78.561635 76.725962
68.691018 0.630000 38.850000 49.312012 47.434389
114.581391 0.310000 72.450000 82.256530 81.208110
48.157651 0.720000 29.400000 34.250257 33.472363
63.399954 0.650000 36.750000 47.264331 46.346092
79.903585 0.600000 42.000000 53.359693 51.875788
68.619888 0.600000 42.000000 51.424809 50.497886
67.862717 0.700000 31.500000 52.375845 51.740205
35.356172 0.780000 23.100000 21.901897 20.927740
100.412243 0.400000 63.000000 67.209030 66.049413
22.331680 0.750000 26.250000 13.240187 12.933529
84.318098 0.500000 52.500000 57.945535 56.646722
66.408653 0.630000 38.850000 51.261654 50.266559
91.962793 0.500000 52.500000 66.896698 65.347038

Continuado na proxima péagina
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Tabela 13: Dados de treino agregados - para regressao (Continuado)

Energia es- | Nivel de bate-| Energia  real | Energia  esti- | Energia es-
timada  pelo | ria (SOC) (calculada via | mada pelo mo- | timada  pelo
modelo  fisico SOC) (kWh) delo fisico com | modelo fisico
sem  regenera- regeneragao com  regene-
¢ao exponencial ragao linear
(kWh) (kWh)
61.375851 0.690000 32.550000 42.828607 42.185784
52.245147 0.720000 29.400000 35.906582 34.993003
105.972418 0.380000 65.100000 74.454042 72.905964
87.454302 0.600000 42.000000 68.398661 66.647056
92.154118 0.600000 42.000000 66.509849 64.368003
76.998761 0.600000 42.000000 54.071012 53.004583
97.560975 0.430000 59.850000 71.882499 70.429158
65.281302 0.600000 42.000000 48.441806 47.804028
74.903829 0.630000 38.850000 53.869433 53.136900
49.608749 0.670000 34.650000 34.623894 33.717910
62.331991 0.500000 52.500000 43.617518 42.694031
85.648366 0.500000 52.500000 59.553845 58.240725
84.029636 0.500000 52.500000 59.514740 58.337110
88.998874 0.500000 52.500000 64.023855 63.091733
84.747363 0.500000 52.500000 60.190688 58.910877
70.935281 0.570000 45.150000 51.658936 50.663580
78.837026 0.500000 52.500000 55.769074 54.369760
68.970990 0.570000 45.150000 46.230850 45.210111
94.027534 0.500000 52.500000 74.195559 73.140115
73.965469 0.530000 49.350000 55.461323 54.147302
94.997291 0.400000 63.000000 67.597807 66.184826
67.344466 0.530000 49.350000 43.803954 42.791552
77.402333 0.570000 45.150000 58.293345 07.224365
68.113148 0.530000 49.350000 44.206356 42.595089
97.660774 0.470000 55.650000 70.040664 68.625070

Continuado na préxima pagina
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Tabela 13: Dados de treino agregados - para regressao (Continuado)

Energia es- | Nivel de bate-| Energia  real | Energia  esti- | Energia es-
timada  pelo | ria (SOC) (calculada via | mada pelo mo- | timada  pelo
modelo  fisico SOC) (kWh) delo fisico com | modelo fisico
sem  regenera- regeneragao com  regene-
¢ao exponencial racao linear
(kWh) (kWh)
53.492070 0.630000 38.850000 39.983163 39.267503
116.447813 0.400000 63.000000 85.663284 84.092077
88.590557 0.570000 45.150000 66.370840 65.340408
T74.768757 0.560000 46.200000 47.777390 46.240972
90.305701 0.500000 52.500000 67.998786 66.953273
77.082374 0.530000 49.350000 04.018175 52.830063
44.798016 0.750000 26.250000 33.782816 33.436204
92.689841 0.500000 52.500000 67.461478 65.995517
78.210316 0.600000 42.000000 55.543904 54.221127
68.911326 0.600000 42.000000 46.118055 45.264396
72.870175 0.630000 38.850000 57.154124 56.204279
81.541570 0.500000 52.500000 61.283221 60.620697
79.772936 0.570000 45.150000 63.159297 61.590767
95.985239 0.400000 63.000000 64.645253 62.813626
34.859723 0.750000 26.250000 24.595124 24.203567
97.682462 0.350000 68.250000 66.904963 65.289588
79.846616 0.560000 46.200000 56.674796 55.038060
97.613596 0.500000 52.500000 70.800239 69.718468
86.318911 0.350000 68.250000 60.186404 58.533846

E, por fim, dados de teste para validacdo dos modelos:
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Tabela 14: Dados de teste - para calculo de erros

Nivel de bate- | Energia  real | Energia es- | Energia es- | Energia es-
ria (SOC) (calculada via | timada  pelo | timada  pelo | timada  pelo
SOC) (kWh) modelo  fisico- | modelo fisico- | modelo fisico-
estatistico sem | estatistico com | estatistico com
regeneracao regeneragao regeneracao
(kWh) linear (kWh) exponencial
(kWh)
0.590000 43.050000 37.834208 44.121310 44.317317
0.400000 63.000000 44.751133 51.082866 51.238533
0.570000 45.150000 40.435382 47.551830 47.412222
0.180000 86.100000 52.107866 58.063440 58.519032
0.570000 45.150000 44.985096 52.380181 52.518125
0.380000 65.100000 47.028900 52.055536 52.325651
0.400000 63.000000 62.630398 73.079586 73.103801
0.380000 65.100000 42.967770 49.958850 50.191960
0.560000 46.200000 48.266232 56.272801 56.607048
0.430000 59.850000 47.688743 55.350872 55.250046
0.610000 40.950000 30.310870 37.371861 37.251651
0.440000 58.800000 45.714854 54.980954 54.580863
0.500000 52.500000 48.879226 58.757631 58.512298
0.500000 52.500000 44.533931 50.579530 50.904110
0.630000 38.850000 37.862323 45.448929 45.432412
0.500000 52.500000 41.675161 47.835292 47.937041




	Folha de rosto
	Resumo
	Abstract
	Lista de ilustrações
	Lista de ilustrações
	Sumário
	Introdução
	Motivação
	Aspecto ambiental
	Desafios e oportunidades em frotas eletrificadas
	Importância de modelos de energia para veículos elétricos

	Diagnóstico da operação
	Objetivo do trabalho
	Estrutura do trabalho

	Revisão da Literatura
	Estimação de emissão de gases de efeito estufa (GEE)
	Estimativa de consumo de energia em veículos elétricos
	Estimativa de Estado de Carga (SOC)
	Preparação de dados de GPS
	Aplicações de Modelos de Energia

	Materiais e Métodos
	Coleta de dados
	Dados de GPS
	Dados de pontos de entrega
	Dados de SOC na volta ao centro de distribuição

	Preparação de dados
	Limpeza e filtragem inicial de rotas
	Designação de pontos de entrega e estimação da perda de massa ao longo da rota
	Map-matching

	Separação em dados de treino e teste
	Aplicação e estimação de parâmetros de modelos microscópicos
	Dados do veículo e parâmetros do modelo de energia
	Energia nas rodas do caminhão
	Sistemas regenerativos
	Regeneração linear
	Regeneração exponencial
	Estimativa numérica de coeficientes de regeneração

	Regressão linear da energia consumida em função da energia estimada

	Estimativa do consumo energético para modelos macroscópicos, mesoscópicos e análise de erros para os modelos desenvolvidos

	Resultados e discussão
	Coeficientes de modelo sem sistema regenerativo
	Coeficientes do modelo com sistema regenerativo linear
	Coeficientes de modelo com sistema regenerativo exponencial
	Derivação de parâmetros macroscópicos e mesoscópicos
	Avaliação de erros em dados de teste
	Comparação entre os modelos
	Fontes de ruído e erro no modelo
	Energia consumida
	Energia estimada
	Estimação de massa
	Estimação de velocidade e aceleração e associados ao intervalo de integração


	Análises derivadas dos modelos de energia
	Dimensionamento de frotas com autonomia fixa (parâmetro macroscópico)
	Clusterização de rotas

	Síntese de aprendizados

	Conclusões e próximos desenvolvimentos
	Conclusão
	Próximos desenvolvimentos

	Referências
	Apêndice A - Ambiente e código
	Apêndice B - Dados

